
國立陽明交通大學
資訊科學與工程研究所

碩士論文

Institute of Computer Science and Engineering

National Yang Ming Chiao Tung University

Master Thesis

運用符號執行之模組化脅迫生成系統

CRAXplusplus: Modular Exploit Generator using Symbolic Execution

研究生：王冠中 （Wang, Guan-Zhong）

指導教授：黃世昆 （Huang, Shih-Kun）

中華民國一一一年五月

May 2022

運用符號執行之模組化脅迫生成系統
CRAXplusplus: Modular Exploit Generator using Symbolic Execution

研究生 ：王冠中 Student ：Guan-Zhong Wang
指導教授 ：黃世昆 博士 Advisor ：Dr. Shih-Kun Huang

國立陽明交通大學
資訊科學與工程研究所

碩士論文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Yang Ming Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master of Science

May 2022
Taiwan, Republic of China

中華民國一一一年五月

誌 謝

學測放榜那年，因為家裡的醫療開銷龐大，加上自己高中讀得一團糟，所以下定決心讀了

國防大學（軍校）資管系。由於交大當時與國防理工簽約，讓軍校生畢業也能領交大畢業證

書，因而引發交大學生與畢業校友在 ptt 上的強烈反彈 1。

「給一群廢物文憑幹嘛」

「國防大學大概只有國中程度」

「交大是想把自己名聲弄臭嗎」

在 ptt 看到這些言論時，老實說當時心裡非常痛苦，卻無能為力。軍中的風氣、吼罵教育、

勤務 (打掃、刷漆、搬重物、基本教練、衛哨)，對追求專業都構成了極大的阻礙。除了平時讀

書時間完全無法自理之外，身邊志同道合的同學也寥寥無幾，因此那段日子裡非常孤單。但也

正是因為軍校嚴苛的環境，才讓我磨練出堅韌的意志力，並驅使我將零星的休息時間一致投入

在唸書與寫 side projects 上。大三下的暑假，我厚著臉皮和父母借了 60 萬向軍校辦理自願退

學，以轉學考 100 分的成績轉進了北市大資科系，並於一年後如願推甄上了交大資工所丙組。

謝謝我的恩師：黃世昆教授，多虧了您對我的悉心指導與照顧，我才得以完成這項我未曾

想過自己會完成的研究：AEG。此外，我也要謝謝許多曾經幫助過我的老師們：葆宏老師、

東華老師、pecu 以及 jserv，謝謝您們毫不吝嗇地為我寫了研究所推薦信，才有今日此刻的

我。最後，非常感謝 Synology 當年的 internship 與後來的 return offer。

最後的最後，我想謝謝我的好朋友們。感謝冠浤、彥彬時常關心我的身心狀況，總是在我

無助的時候伸出援手。謝謝靜慧，也很抱歉，耽誤了妳兩年時間。謝謝育甄、宸禎、泓勛、瑋

丞時常陪我聊天。謝謝常常陪我吃宵夜的觀明，以及 SQLab 的朋友們，我們一起打過 CTF，

一起在實驗室熬夜通宵讀書，一起 rush 下水道，一起討論論文，與你們之間的革命情感是我

碩班兩年裡最珍貴的回憶。謝謝家人，這一路上給你們添了不少困擾，謝謝你們的照顧。

1[新聞] 讀國防大學理工學院可領交大文憑。原文網址：https://disp.cc/b/163-awaT

運用符號執行之模組化脅迫生成系統

學生 ：王冠中
指導教授 ：黃世昆 教授

國立陽明交通大學資訊科學與工程研究所碩士班

摘 要

人工分析軟體漏洞並編寫脅迫腳本，通常需要我們對資訊安全的知識與技術有一定程度的

掌握。因此，自動化軟體脅迫生成（Automatic Exploit Generation）成為一門研究領域，其

目的在於自動地找出高危險並且必須即刻被修補的軟體漏洞。然而，縱使是目前最先進的軟體

脅迫生成技術也鮮少考量到脅迫緩解機制所帶來的限制，例如：ASLR, NX, PIE, Canary 與

Full RELRO。LAEG 於 2021 年提出基於資訊洩漏來自動化繞過脅迫緩解機制的系統，但由

於該系統使用動態污點分析搭配德布魯因數列（De Bruijn Sequences）進行數據流分析，因

此當目標軟體存在輸入轉換（Input Transformation）的操作時會導致該系統失效。

本研究提出 CRAXplusplus，一個基於 S2E 平台的模組化軟體脅迫生成系統。給定一個

x86_64 二進制目標程式與概念測資，該輸入會構成一條特定的執行路徑，我們運用擬真執行

（Concolic Execution）來搜集該路徑的限制式，並且對其添加脅迫限制式，再透過求解器來

產生最終的脅迫腳本。除此之外，本系統允許使用者新增自訂的脅迫技術模型（Technique）

與分析模組（Module），以期將系統的可擴充性最大化。我們實作了數個脅迫技術模型，並

設計兩個返回導向程式設計載荷（Payload）的串接算法。不僅如此，本系統內建兩個分析模

組：IOStates 與 DynamicRop，前者將 LAEG 繞過脅迫緩解機制的方法整合到 S2E 的多路

徑執行環境下，而後者讓本系統能在 S2E 中動態模擬返回導向程式設計的效果，並同時紀錄

脅迫限制式。實驗結果顯示，當目標軟體存在特定且足夠的輸入/輸出執行狀態且能被用來洩

漏所有必要的資訊時，儘管在脅迫緩解機制全部開啟，甚至當目標程式存在輸入轉換操作的情

況下，CRAXplusplus 仍能夠生成可用的脅迫腳本，足以驗證本研究的有效性。

關鍵字：自動化軟體脅迫生成、擬真執行、位址空間配置隨機載入、返回導向程式設計

i

CRAXplusplus: Modular Exploit Generator using Symbolic Execution

Student : Guan-Zhong Wang
Advisor : Dr. Shih-Kun Huang

Institute of Computer Science and Engineering
National Yang Ming Chiao Tung University

ABSTRACT

Manually crafting exploits for vulnerable binaries may require profound knowledge in

computer security. Hence, automatic exploit generation becomes a research field, aiming

to automatically discover exploitable bugs that need to be patched as early as possi-

ble. However, most state-of-the-art solutions targeting stack-based vulnerabilities cannot

bypass exploit mitigations (ASLR, NX, PIE, Canary and Full RELRO). LAEG (2021)

proposed leak-based exploit generation to bypass ASLR, NX, PIE and Canary, but since

it performs lightweight data flow analysis using dynamic taint analysis and De Bruijn

sequence, LAEG could not handle programs that perform input transformations.

This thesis proposes a modular exploit generator, CRAXplusplus, based on S2E. Given

a x86_64 binary program and a PoC input, our system leverages concolic execution to

collect the path constraints introduced by the PoC input, add exploit constraints to

the crashing states, and query the constraint solver for exploit script generation. Our

system supports custom exploitation techniques and modules with the aim of maximizing

its extensibility. We implement several binary exploitation techniques in our system,

and design two ROP payload chaining algorithms to build ROP payload from multiple

techniques. In addition, we implement two modules: IOStates and DynamicRop. The

former adapts the methodology of LAEG to the multi-path execution environment in

S2E, and the latter enables our system to dynamically perform ROP inside S2E as it adds

exploit constraints. Our results show that provided the target binary contains an adequate

amount of input and output states to perform information leak, CRAXplusplus can still

generate a working exploit script even when all the exploit mitigations are enabled at the

same time, and even in the presence of basic input transformations.

Keywords: Automatic Exploit Generation, Concolic Execution, ASLR, Return-Oriented

Programming

ii

Contents

摘要 i

Abstract ii

Contents iii

List of Figures vi

List of Tables viii

List of Algorithms ix

1 Introduction 1

1.1 Background . 1

1.1.1 S2E . 1

1.1.2 CRAX . 3

1.1.3 Linux Exploit Mitigations . 3

1.1.4 Terminologies . 4

1.2 Problem Description . 5

1.3 Motivation . 5

1.4 Objectives . 7

2 Related Work 8

2.1 AEG . 8

2.2 Mayhem . 8

2.3 Q . 9

2.4 CRAX . 9

2.5 Zeratool . 9

2.6 LAEG . 10

2.7 Revery . 10

3 Design and Implementation 11

iii

3.1 Overview . 11

3.1.1 Workflow . 12

3.1.2 Preparations . 13

3.2 APIs . 15

3.2.1 Registers and Memory . 15

3.2.2 Virtual Memory Map . 17

3.2.3 Disassembler . 20

3.2.4 Logging . 21

3.3 Signals and Hooks . 22

3.3.1 Symbolic RIP Handler . 22

3.3.2 Instruction Hooks . 22

3.3.3 System Call Hooks . 23

3.4 ROP Payload Builder . 26

3.4.1 Definitions . 26

3.4.2 Adding Register and Memory Constraints 26

3.4.3 Querying the Solver for New Concrete Inputs 28

3.4.4 Exploit Constraints . 28

3.4.5 Internal Representation . 32

3.4.6 Chaining the ROP Payload from Multiple Techniques 34

3.5 Techniques . 38

3.5.1 Ret2csu . 38

3.5.2 BasicStackPivoting . 40

3.5.3 AdvancedStackPivoting . 41

3.5.4 Ret2syscall . 44

3.5.5 GotLeakLibc . 45

3.5.6 OneGadget . 45

3.6 Modules . 46

3.6.1 I/O States . 46

3.6.2 Dynamic ROP . 56

3.7 Exploit Generator . 59

3.7.1 Exploit Script Generation . 59

3.7.2 Default Core Generator . 60

iv

3.7.3 Leak-Based Core Generator . 61

4 Evaluation 65

4.1 Experimental Environment . 65

4.2 Experimental Results . 65

4.2.1 RQ1: ASLR and NX . 66

4.2.2 RQ2: ASLR, NX, PIE, Canary, and Full RELRO 67

4.2.3 RQ3: Exploit Mitigations and Input Transformations 69

5 Conclusion and Future Work 73

5.1 Conclusion . 73

5.2 Future Work . 73

Bibliography 74

v

List of Figures

1 The system architecture of S2E. 3

2 The system architecture of CRAXplusplus. 11

3 The data flow of concolic execution proxy (symbolic stdin). 14

4 Populating VirtualMemoryMap. 18

5 Return-to-libc on x86 and x86_64. 29

6 Return-to-csu on x86_64. 29

7 The unexploitable CTF challenge from pwnable.tw. 31

8 The syscall gadget in __read() from libc.so.6. 31

9 Two-stage stack-pivoting ROP payload. 32

10 KLEE’s Expr Tree. 32

11 The class hierarchy of klee::Expr. 33

12 Representing an exploit constraint as a S-Expr binary tree. 33

13 The internal representation of the ROP payload formula of a technique. . . 34

14 Chaining ROP payload in direct mode. 36

15 Inheritance diagram for the techniques in CRAXplusplus. 38

16 Ret2csu ROP chain. 39

17 __libc_csu_init() generated by different versions of GCC. 40

18 The disassembly of Listing 3.18. 41

19 The program will call read@plt but never return. 42

20 __read() in libc.so.6 invokes sys_read(0, RSP, 0x30). 42

21 Accumulating space for one ROP payload of return-to-csu. 43

22 The syscall instruction in __read() from libc 2.24. 44

23 The syscall instruction in __read() from libc 2.31. 44

24 Running one_gadget on libc 2.31. 45

vi

25 Inheritance diagram for the modules in CRAXplusplus. 46

26 The uninitialized guest memory region from Listing 3.19. 47

27 The VirtualMemoryMap of the process from Listing 3.19. 48

28 I/O states in S2E’s multi-path execution environment. 52

29 Identifying a canary-checking branch instruction. 54

30 Intercepting the stack canary of the target process. 54

31 A generated exploit script with information leak capabilities. 55

32 The template of a generated exploit script. 59

33 The inheritance diagram of core generators. 60

34 Pseudo input stream. 62

35 Implementation of b64decode() and the propagation of symbolic bytes. . . 72

vii

List of Tables

1 The leakable input offsets table for Figure 26. 49

2 List of x86_64 binaries successfully exploited by CRAXplusplus. 66

viii

List of Algorithms

1 RopPayloadBuilder::chainSymbolic() . 35

2 RopPayloadBuilder::chainDirect() . 37

3 IOStates::analyzeLeak() . 49

4 IOStates::detectLeak() . 51

5 DynamicRop::applyNextConstraintGroup() 58

6 DefaultCoreGenerator::generateMainFunction() 60

7 LeakBasedCoreGenerator::generateMainFunction() 61

8 LeakBasedCoreGenerator::handleInputStateInfo() 63

9 LeakBasedCoreGenerator::handleOutputStateInfo() 64

ix

Chapter 1

Introduction

Binary exploitation refers to the process of exploiting vulnerabilities in binary programs,
making them perform unintended actions such as arbitrary code execution, authentica-
tion bypass, and privilege escalation. Manually crafting exploits for vulnerable binary
programs is not a trivial task due to the huge amount of background knowledge involved.

Automatic exploit generation helps us automatically discover exploitable bugs that
need to be patched as early as possible. Previous research mostly assumes that defensive
techniques are absent in the target system, but in modern linux systems, multiple exploit
mitigations (e.g., ASLR, PIE, NX, canary, Full RELRO, etc) are very likely to be enabled
at the same time, which makes binary exploitation harder than before.

1.1 Background

1.1.1 S2E

Symbolic Execution

Symbolic execution [10] is a means of program analysis. On the contrary, concrete exe-
cution refers to the normal way a program executes, which is what we’re already familiar
with.

The idea of symbolic execution is to mark some variables as symbolic at the beginning
of program execution, build mathematically symbolic expressions as programs execute,
and solve the constraints of unexplored paths using a constraint solver whenever a branch
is encountered. Note that symbolic bytes are infectious: any register or memory location a
symbolic byte propagates through will also become symbolic. While symbolic execution is
good at exploring unvisited paths, it’s subject to path explosion especially with large-scale
programs because the amount of execution paths grows exponentially.

1

Concolic Execution

Concolic execution [19] combines concrete and symbolic execution. Instead of exploring
all possible execution paths, concolic execution explores just one execution path in a single
run. At the beginning, the user provides an initial seed for the target program, which
implicitly determines a particular execution path. As the program executes, the path
constraints are collected, but no state forks will be done. Once the program terminates,
the engine negates the last branch condition and queries the solver for a new concrete
input which triggers another unvisited branch.

The S2E Platform

S2E [6] is a platform for multi-path program analysis with selective symbolic execution
(i.e. concolic execution) on which CRAXplusplus is built. It is written in C/C++17 and
has around 135k LoC as of version 2.0. It is implemented as a shared library (s2e.so)
which can be preloaded into a target hypervisor process (e.g., QEMU [2]) that uses linux
KVM [11] for CPU virtualization, enabling the entire virtual machine to perform symbolic
execution.

Normally, when QEMU is executed with the command-line flag ”-enable-kvm”, it
requests vCPU from the linux kernel by making a sequence of system calls to /dev/kvm, as
shown in Figure 1a. On the other hand, when s2e.so is preloaded into a linux KVM client
such as QEMU, S2E will intercept these calls to /dev/kvm and handle CPU emulation
by itself, as illustrated in Figure 1b.

For CPU emulation, S2E refactored the Dynamic Binary Translator (DBT) from
QEMU into a standalone userspace library, libcpu. Firstly, the instructions from the
target program are lifted to TCG ops (the IR used by QEMU). Secondly, when there are
no symbolic data involved in these instructions, the TCG ops will be translated into host
machine code directly for concrete execution, otherwise the TCG ops will be lifted further
into LLVM bitcode (the IR used by Clang/LLVM) and passed to KLEE [3] for symbolic
execution. S2E acts as a coordinator to decide whether concrete or symbolic execution
should be used, and synchronize the concrete address space and symbolic memory objects.

S2E implements a non-typical form of concolic execution where state forks are allowed.
In the context of S2E, CRAX and CRAXplusplus, the initial seed drives the target pro-
gram down to a specific state following a particular path, during which side branches will
be forked and S2E would thoroughly explore all the other paths once the main seed path
is fully explored.

2

(a) How normal linux KVM clients work (b) How S2E hijacks CPU emulation from a linux KVM client

Figure 1: The system architecture of S2E.

1.1.2 CRAX

CRAX [8] proposed an end-to-end approach capable of generating exploits from crash
inputs using a full-system environment model with S2E. Given a crash input, the target
program executes along a particular execution path, and the input constraints introduced
by that path will be collected. Once the target program has reached the crashing state,
CRAX will attempt to generate exploits using the input constraints collected.

1.1.3 Linux Exploit Mitigations

In this section, we discuss five most commonly-seen exploit mitigations in linux:

1. Address Space Layout Randomization (ASLR)
ASLR is a feature provided by the kernel which randomizes the base addresses of
several memory sections, making buffer-overflow attacks harder to succeed. In linux,
there are three levels of ASLR to choose from:

• level 0 - no randomization.
• level 1 - randomize shared libraries, stack, mmap().
• level 2 - randomize shared libraries, stack, mmap(), brk(), heap.

2. Position-Independent Executable (PIE)
The goal of compiling a program into a position-independent executable is random-

3

izing the entire executable image at runtime. In other words, the base addresses
of .text, .rodata, .data, and .bss will be unpredictable at runtime. This feature is
offered by compilers and requires ASLR to provide true randomization.

3. Executable Space Protection (NX, W ⊕ X)
In early days, attackers usually place shellcode within the data or stack segments
and execute their malicious instructions. This mechanism ensures that the pages
belong to data and stack segments shouldn’t be executable.

4. Stack Canary
On 64-bit linux, the stack canary is a 8-byte magic bytes placed in the stack frame
just before the saved RBP. In addition, the first byte of a canary is always 0x00.
Before returning from a function, the program itself will check whether the canary
has been modified, and if it has, then the program will abort immediately by calling
__stack_chk_fail(). This is used to prevent against stack-buffer overflow attacks.

5. Full Relocation Read-Only (Full RELRO)
Overwriting an entry in the Global Offset Table of a user program, also known as
GOT hijacking, is a well-known binary exploitation technique. Full RELRO is a
compiler option which makes the entire GOT read-only, making it impossible for
the attacker to overwrite GOT entries.

1.1.4 Terminologies

In compuer security, the terms exploit and payload have always been context-dependent
and somewhat ambiguous. Therefore, we’ll first clarify how we use these terms in the
remaining chapters.

In American English, exploit (a transitive verb) refers to ”taking advantage of” some-
thing, and in computer security it specifically refers to ”taking advantage of bug(s)” in
software to make the program perform unintended actions. Furthermore, it can also be
used as a noun to refer to a program, a script, or a chunk of data which exploits another
program.

In CRAX, all the exploit mitigations are assumed to be disabled, so the layout of the
virtual address space of a process is predictable to the attacker. In this case, no informa-
tion leak is required during exploitation, so the generated exploit can be purely binary
data. Nevertheless, in CRAXplusplus, we want to generate exploits that are resistant
to ASLR, PIE, Canary, and Full RELRO, so information leaks are inevitable during ex-
ploitation. As a result, an exploit generated by our system must be a program or a script

4

which can interact with the target program. CRAXplusplus generates python scripts that
communicate with the target process via pwntools [7], whereas the data sent to the target
process by the exploit (script) are referred to as payload.

1.2 Problem Description
Linux Exploit Mitigations

Most state-of-the-art automatic exploit generation systems assume that exploit mitiga-
tions are disabled on the target system. However, this can be impractical in real-world
scenarios because ASLR is enabled on linux nowadays by default. In addition, PIE, NX,
Canary, Full RELRO are enabled simultaneously for all the binaries from coreutils [13].

Input Transformations

Some programs can modify the user’s input. From the point of view of binary exploitation,
our payload may not arrive at the location we expect and can even be tampered. In such
cases, our payload will be transformed into something else and become useless. Listing
1.1 is an example vulnerable program with input transformations.

1.3 Motivation
Listing 1.1 shows our motivating example, a linux program with all the exploit mitigations
(ASLR, NX, PIE, Canary and Full RELRO) enabled at the same time, and it performs
some simple input transformations.

This program allocates a stack buffer of 0x18 bytes, and there are three calls to read()
at line 8, 12 and 16 which can lead to stack-buffer overflow. The first call to read()
is followed by a call to printf() which prints the stack buffer’s content with ”%s”. In
fact, this can lead to information leak vulnerability because the stack canary or some
runtime addresses can be written to stdout, and these leaked information can be used
to construct the payload for further exploitation. In addition, before main() returns, the
program reverses all the bytes in buf, increments each byte with an even index by 1, and
decrements each byte with an odd index by 3.

To exploit this binary, we can leverage the first two calls to read() to leak the canary
as well as the runtime base address of the ELF image, and then send our ROP payload
through the third call to read(). Furthermore, the third call to read() only allows us to
send at most 0x30 bytes to buf, so we can only overwrite the canary, the saved RBP, and

5

the return address.

LAEG [22] proposed a systematic approach, IOStates, to bypass ASLR, PIE and
Canary. It idea is to hook all the read() and write() system calls in the target program, so
that we can inspect the buffer before sys_read() to look for any information that can be
leaked, and also verify whether leaking is successful after sys_write(). This approach was
originally implemented in Qiling Framework [9] using taint analysis, and we adapted it
to the multi-path execution environment in S2E. CRAXplusplus is capable of generating
a working exploit for this program, and we’ll elaborate on our methodology throughout
chapter 3.

1 // gcc -o aslr-nx-pie-canary-fullrelro main.c -g -z now
2 // ASLR, NX, PIE, Canary, Full RELRO
3 int main() {
4 char buf[0x18];
5
6 printf("what's your name: ");
7 fflush(stdout);
8 read(0, buf, 0x80);
9

10 printf("Hello, %s. Your comment: ", buf);
11 fflush(stdout);
12 read(0, buf, 0x80);
13
14 printf("Thanks! We've received it: %s\n", buf);
15 fflush(stdout);
16 read(0, buf, 0x30);
17
18 std::reverse(buf, buf + 0x30);
19 for (int i = 0; i < 0x30; i += 2) {
20 buf[i] += 1;
21 }
22 for (int i = 1; i < 0x30; i+= 2) {
23 buf[i] -= 3;
24 }
25 }

Listing 1.1: A program with input transformations and all exploit mitigations enabled.

6

1.4 Objectives
In this thesis, we present CRAXplusplus, a modular exploit generator built upon S2E.
We focus on the following goals:

1. Integrate IOStates from LAEG [22] with concolic execution.

2. Generate exploit scripts that are resistant to basic input transformations.

3. The generated exploits have to survive various exploit mitigations by proactively
leaking sensitive information from uninitialized memory if possible.

7

Chapter 2

Related Work

In this chapter, we review the related work of automatic exploit generation.

2.1 AEG
AEG [1] was the first system to generate end-to-end shell-spawning exploits for exploitable
vulnerabilities. It takes two files as input: A) a binary program compiled with gcc, and
B) the LLVM bitcode file (*.ll) of the target program compiled by clang.

AEG’s bug finding infrastructure detects bugs in the program at source-code level
(more specifically, from LLVM bitcode). Once a bug has been found, it solves the path
constraints, generate a concrete input which triggers the bug, and perform dynamic binary
analysis on the target program using the generated concrete input.

Next, AEG tries to generate an exploit during dynamic binary analysis. AEG supports
two types of exploits: return-to-stack and return-to-libc. For return-to-stack exploits,
the exploit constraints are defined as A) filling the vulnerable buffer with shellcode, and
B) setting the overwritten return address to the address of shellcode. Finally, AEG
concatenates the input constraints and the exploit constraints, and query the constraint
solver for an exploit (in the form of pure binary data) which satisfies the constraints.
However, return-to-stack exploits are limited to NX disabled, and return-to-libc exploits
generated by AEG only work locally.

2.2 Mayhem
Mayhem [4] was the first automatic exploit generation system that performs binary-only
analysis. It developed hybrid symbolic execution which combines both online and
offline symbolic execution in order to strike a balance between speed and memory usage,

8

maximizing the efficiency of input space exploration. Online symbolic execution (i.e.
normal symbolic execution) tries to explore all execution paths in a single run, and offline
symbolic execution (i.e. concolic execution) concretely executes a single path in a single
run but also symbolically executes it. Mayhem did not deal with defenses such as ASLR
and NX.

2.3 Q
Q [18] proposed a solution to generate Return-Oriented Programming (ROP) payload
using unrandomized gadgets from .text of ELF in order to bypass W ⊕ X (i.e. NX) and
ASLR at the same time. However, this limits its targets to the executables with PIE
disabled.

2.4 CRAX
CRAX [8] was the automatic exploit generation system developed by Software Qual-
ity Laboratory at National Chiao Tung University back in 2012. It analyzes software
crashes using concolic execution following failure-directed paths, using a whole-system
environment provided by S2E. In addition, CRAX proposed a new selective symbolic in-
put method and lazy evaluation on pseudo symbolic variables to handle symbolic pointers
for performance optimization.

CRAX was capable of dealing with stack and heap buffer overflows, format string
bugs as well as uninitialized variables, and had successfully generate exploits for large-
scale applications such as mplayer (linux) and Microsoft Office (Windows). Nevertheless,
similar to AEG and Mayhem, CRAX did not generate exploits that are resistant to ASLR
and NX.

2.5 Zeratool
Zeratool [16] is an open-source automatic exploit generation system which targets Cap-
ture The Flag (CTF) problems. It uses angr [20] to concolically analyze binaries by
hooking printf() and looking for unconstrained paths, weaponizing these program states
for remote code execution through pwntools [7]. Starting from version 2.1, it supports
leaking the base address of libc and building an ROP chain which eventually invokes
execve(/bin/sh,NULL,NULL) or system(/bin/sh).

9

2.6 LAEG
LAEG [22] was the automatic exploit generation system developed by Network Security
Laboratory at National Taiwan University in 2021. It was built upon Qiling Framework
[9] and used dynamic taint analysis to analyze binaries. LAEG also targeted Capture The
Flag (CTF) problems, but it proposed a novel technique, IOStates, which could be used
to generate exploit scripts that could leak the canary and the base addresses of ELF and
libc, thereby resistant to ASLR, PIE, NX and canary.

2.7 Revery
Revery [21] was an automatic exploit generation system targeting heap-based vulnera-
bilities. The main claim of Revery is that the exploitable state doesn’t necessary exist
in the crashing path, and it can exist in diverging paths instead. Revery proposed three
techniques: A) layout-contributor digraph to characterize a vulnerability’s memory layout
and its contributor instructions, B) layout-oriented fuzzing for diverging paths exploration
and diverging inputs generation, and C) control-flow stitching to stitch crashing paths and
diverging paths together for exploit synthesis.

10

Chapter 3

Design and Implementation

In this chapter, we discuss the design and implementation of our exploit generation system,
CRAXplusplus.

3.1 Overview
CRAXplusplus is implemented as a plugin of S2E 2.0. Its workflow is divided into three
stages: 1) Fuzz Testing, 2) Concolic Testing, as well as 3) Crash Analysis and Exploit
Generation, as shown in Figure 2.

Figure 2: The system architecture of CRAXplusplus.

11

3.1.1 Workflow

Fuzz Testing

CRAXplusplus is designed to serve as a backend of program analyzers and fuzzers, i.e.,
it requires external tools to perform automatic bug discovery. For instance, once a fuzzer
has found a crash in a program, the user should have access to the input data that causes
the target program to crash. CRAXplusplus takes the binary program as well as the
accompanying crash input (i.e. PoC input) as the input, and generates exploit scripts as
the output.

Concolic Testing

We load the content of PoC input into memory, mark it as symbolic via our concolic
execution proxy (which will be described later in 3.1.2), and then finally we pass it to the
target program to concolically execute it in S2E.

The concrete PoC input determines one particular path for the target program. As
the target program executes, the symbolic bytes may propagate to some registers and
memory locations. For stack-buffer overflow problems, the symbolic bytes may eventually
propagate to the RBP and RIP registers, resulting in control-flow hijacking. Once some
symbolic bytes are about to be assigned to the RIP register, our exploit generation plugin
is triggered and exploit generation begins.

Crash Analysis and Exploit Generation

CRAX [8] models the exploit generation process as the manipulation of software failures,
especially introduced by software crashes. Given a PoC input, CRAX concolically executes
the target program and collects the path constraints determined by the PoC input. Once
the target program crashes and triggers the symbolic RIP handler, CRAX has full access
to the CPU context as well as the entire memory snapshot at the crashing state of the
target process, and it will append the exploit constraints to the collected input constraints
and query the solver for a satisfying answer. This answer, in the form of binary data, is
used by CRAX directly as the exploit because when it is fed into the target binary, a shell
will be spawned.

CRAXplusplus, while derived from CRAX, is built with a different philosophy and
different objectives. Due to the never-ending race between attackers and defenders, new
exploitation techniques are proposed every once in a while, while some of them become
obsolete over time. For this reason, we decide to design CRAXplusplus as a modular

12

exploit generation system, enabling the community to extend CRAXplusplus with custom
modules and techniques in the future.

One of the objectives of CRAXplusplus is to generate shell-spawning exploits for CTF
pwn binaries with information leak vulnerabilities even when the following protections are
enabled at once: ASLR, NX, PIE, Canary, Full RELRO. Normally, sensitive information
is leaked via I/O, and we must perform some arithmetic on the leaked information to
construct the payload which facilitates further attacks. As a result, we wrap the original
”exploit” with a script, referring to the original ”exploit” now as the ”payload”. More-
over, to circumvent all the obstacles brought by the binary protections, the generated
exploit scripts employ return-oriented programming [17] (ROP) as the default strategy,
and adapted the leak-based exploit generation developed by LAEG [22] to the multi-path
execution environment in S2E.

3.1.2 Preparations

Selection of Tools

When manually exploiting a binary, a human hacker usually needs to perform dynamic
analysis on the binary program with a debugger (e.g., GNU gdb) to analyze crashes and
debug exploits. To automate this entire process, we pick the following tools:

• S2E - a hypervisor with register/memory APIs and symbolic execution capabilities
• Capstone - disassembly framework
• ROPgadget - for resolving ROP gadgets
• pwnlib - as the ELF parsing library
• pybind11 - for seamless operability between C++11 and Python3

Concolic Execution Proxies

Despite the fact that S2E provides s2ecmd, a guest tool to generate symbolic bytes that
can be passed to our target program, it doesn’t allow us to specify the underlying concrete
bytes where those concrete bytes are initialized to 0x00 using calloc().

To perform concolic execution in S2E, we must implement a concolic execution proxy
which is a standalone program to be executed in the guest. Firstly, it allocates a buffer,
filling it with the concrete bytes from PoC input. Secondly, it calls s2e_make_symbolic()
to mark this buffer as symbolic. Finally, it starts the target program via fork() and exec(),
passing the buffer to the target program either via a pipe or shared memory.

Take symbolic stdin for example, the proxy will have to create a pipe, write the
symbolic bytes to the pipe, and then call fork(). The child calls dup2() to attach its stdin

13

to the pipe, and exec() as the target program, whereas the parent calls wait() on its child
and calls s2e_kill_state() once the child has exited. Eventually, the target program will
receive the symbolic PoC input from its stdin through a pipe, as shown in Figure 3.

Figure 3: The data flow of concolic execution proxy (symbolic stdin).

14

3.2 APIs
This section documents the essential APIs that simplify the development of our exploit
generator. Full documentation is available at https://github.com/SQLab/CRAXplusplus.

3.2.1 Registers and Memory

Although S2E has already provided the APIs to read and write any register and memory
location of the guest environment either symbolically or concretely, those interfaces are
heavily overloaded and thereby somewhat not easy to read and use. Accordingly, CRAX-
plusplus wraps them with cleaner interfaces. The difference between the built-in APIs
and the counterparts from CRAXplusplus is demonstrated in Listing 3.1 and 3.2.

1 S2EExecutionState *state = ...;
2
3 // The Register APIs from S2E
4 uint64_t val;
5 state->regs()->read(CPU_OFFSET(regs[R_EAX]), &val, sizeof(val));
6 state->regs()->read(CPU_OFFSET(regs[12]), &val, sizeof(val));
7 state->regs()->read(CPU_OFFSET(eip), &val, sizeof(val));
8 klee::ref<klee::Expr> expr
9 = state->regs()->read(CPU_OFFSET(regs[R_EAX], klee::Expr::Int64);

10
11 // The Register APIs from CRAXplusplus
12 uint64_t rax = reg(state).readConcrete(Register::X64::RAX);
13 uint64_t r12 = reg(state).readConcrete(Register::X64::R12);
14 uint64_t rip = reg(state).readConcrete(Register::X64::RIP);
15 klee::ref<klee::Expr> rax = reg(state).readSymbolic(Register::RAX);

Listing 3.1: The difference of register APIs between S2E and CRAXplusplus.

1 S2EExecutionState *state = ...;
2
3 // The Memory APIs from S2E
4 std::vector<uint8_t> bytes(0x10);
5 state->mem()->read(0x402000, &bytes.data(), 0x10);
6 klee::ref<klee::Expr> expr = state->mem()->read(0x402000, 0x10);
7
8 // The Memory APIs from CRAXplusplus
9 std::vector<uint8_t> bytes = mem(state).readConcrete(0x402000, 0x10);

15

10 klee::ref<klee::Expr> expr = mem(state).readSymbolic(0x402000, 0x10);

Listing 3.2: The difference of memory APIs between S2E and CRAXplusplus.

Non-Concretizing Read from a Guest Memory Region

One thing worth mentioning is that whenever we are reading from a guest memory region
containing symbolic bytes, those symbolic bytes will be automatically concretized, but
sometimes we just want to retrieve the concrete data from that symbolic region without
them being all concretized to NULL bytes. Regarding this, S2E provides an overloaded
version of S2EExecutionStateMemory::read() which allows the user to toggle concretiza-
tion via a function parameter. However, this method only supports non-concretizing read
of T bytes where T is integral. Our memory API removes such a restriction.

Searching Byte Sequence from the Guest Virtual Address Space

Sometimes we need to search all the occurrences of a certain sequence of bytes from the
guest virtual address space. For instance, when implementing the ret2csu technique, we
may need to look for a memory location holding the address of _fini(). This requires the
use of non-concretizing read(), or the whole guest virtual address space will be concretized.

As a result, we provide a user-friendly interface to search certain bytes from the guest
virtual address space, where the underlying search algorithm is KMP [12]. Listing 3.3
shows an example of searching the bytes ”/bin/sh” from the guest virtual address space,
and the result is returned as a vector containing guest virtual addresses.

1 // Suppose we're given an S2EExecutionState `state`
2 S2EExecutionState *state = ...;
3
4 // Prepare the needle.
5 std::string needleStr = "/bin/sh";
6 std::vector<uint8_t> needle(needleStr.begin(), needleStr.end());
7
8 // Searches all instances of "/bin/sh" from the guest va_space.
9 // The search result is returned as a vector containing

10 // guest virtual addresses.
11 std::vector<uint64_t> addresses = mem(state).search(needle);

Listing 3.3: Searching bytes from the virtual address space.

16

3.2.2 Virtual Memory Map

The virtual memory map in CRAXplusplus is analogous to vmmap from pwndbg and
peda. In our system, we implement it as a llvm::IntervalMap and populate it by merging
the contents of two built-in plugins of S2E: MemoryMap and ModuleMap.

Before explaining how these two plugins work, we need to briefly discuss how S2E
intercepts certain events from the guest linux kernel. The guest linux kernel is actually
not the vanilla linux kernel. Instead, it is instrumented with additional piece of code that
notifies S2E of certain events when they happen. For example, S2E is capable of knowing
when a mmap() system call happens, because the instrumented vm_mmap_pgoff() calls
s2e_invoke_plugin() to inform S2E when a new guest memory region has been success-
fully mapped. The function, s2e_invoke_plugin(), uses inline assembly to insert S2E’s
custom opcodes which can only be recognized by and executed in S2E. Once those cus-
tom instructions are executed, S2E invokes the corresponding handlers in response to the
events.

MemoryMap keeps track of which memory regions have been mapped via the mmap()
system call, each entry of which records the permission (r/w/x). It works by instrument-
ing vm_mmap_pgoff(). However, it fails to keep track of the user stack region because
the stack pages are not mapped via this function. As a result, we need to additionally
probe the stack region by searching both backward and forward around RSP.

ModuleMap keeps track of which executable images have been loaded via linux
kernel’s load_elf_binary(), each entry of which records the name of the executable image.
This poses a problem: We won’t be able to know where libc.so.6 resides in the guest virtual
address space. This is because the guest linux kernel calls load_elf_binary() to load the
target binary as well as the dynamic linker (ld-linux-x86-64.so.2), and the dynamic linker
will relocate itself, loading libc.so.6 without calling load_elf_binary().

The Goal of VirtualMemoryMap

Listing 3.4 shows the class definition of VirtualMemoryMap. Ideally, it should support
the following features:

• Allows the user to iterate over mapped regions
• Associates mapped regions with loaded modules (i.e. executable images)
• Probes the location of [stack] as well as [libc.so.6]
• Provides two methods: getModuleBaseAddress() and getModuleEndAddress()

17

1 struct RegionDescriptor {
2 bool r, w, x;
3 std::string moduleName;
4 };
5
6 using RegionDescriptorPtr = std::shared_ptr<RegionDescriptor>;
7
8 class VirtualMemoryMap
9 : public llvm::IntervalMap<uint64_t, RegionDescriptorPtr> {

10 public:
11 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
12 using reverse_iterator = std::reverse_iterator<iterator>;
13 // ...
14 };

Listing 3.4: The class definition of VirtualMemoryMap

Populating VirtualMemoryMap

Merging the contents of MemoryMap and ModuleMap will give us a rough version of
VirtualMemoryMap (see Figure 4a), but apparently, this doesn’t give us everything we
need. We still need to additionally probe the [stack] and [libc.so.6] regions by ourselves.

Probing [stack] is simple: We just need to linearly search toward low memory starting
from RSP until we’ve found an unmapped page, and do the same thing toward high
memory. Probing [libc.so.6] isn’t hard as well: For a dynamically-linked ELF file, we
can leak the runtime base address of libc.so.6 via GOT[’__libc_start_main’]. Figure 4b
shows the final appearance of our VirtualMemoryMap.

(a) The result of merging MemoryMap and ModuleMap. (b) After manually filling the missing regions.

Figure 4: Populating VirtualMemoryMap.

18

Iterating Over VirtualMemoryMap

Listing 3.5 shows a self-explanatory example of iterating over the virtual memory map in
CRAXplusplus. One can easily iterate over each mapped region, and each entry contains
the region permission as well as the associated module name.

1 S2EExecutionState *state = ...;
2 const auto &vmmap = mem(state).vmmap();
3
4 foreach2 (it, vmmap.begin(), vmmap.end()) {
5 RegionDescriptorPtr region = *it;
6 bool r = region->r;
7 bool w = region->w;
8 bool x = region->x;
9 std::string name = region->moduleName; // e.g., libc.so.6

10 }

Listing 3.5: Iterating over VirtualMemoryMap

Bridging the Compatibility Between llvm::IntervalMap() and std::find_if()

Finally, we need to implement two methods: VirtualMemoryMap::getModuleBaseAddress()
and VirtualMemoryMap::getModuleEndAddress(). Take Figure 4b as an example: Let X
be 0x561104594156, then getModuleBaseAddress(X) would return 0x561104593000, and
getModuleEndAddress(X) would return 0x561104598000. An accompanying example is
provided in Listing 3.6.

We can implement these two methods by combining the use of std::find_if(), std::iterator
and std::reverse_iterator, and we’ll be able to freely search the virtual memory map bidi-
rectionally. Unfortunately, llvm::IntervalMap doesn’t define its own reverse_iterator, so
we define it in VirtualMemoryMap. However, even if we’ve defined it ourselves, using it
with std::find_if() will raise an compilation error with reference binding. Elaborating the
full details here would be tedious and lengthy, see: /usr/include/c++/9/bits/stl_iterator.h.

To solve the compilation error, we add two partial specializations for std::find_if()
w.r.t. VirtualMemoryMap::const_reverse_iterator and VirtualMemoryMap::reverse_iterator.
We must prevent the original std::find_if() from dereferencing our reverse iterator directly,
but instead convert a reverse iterator ‘rit‘ to a forward iterator using std::next(rit).base().
For the details, see: src/API/VirtualMemoryMap.h.

19

1 S2EExecutionState *state = ...;
2
3 uint64_t moduleBase = mem(state).vmmap().getModuleBaseAddress(0x561104594156);
4 // moduleBase == 0x561104593000, i.e. target ELF base
5
6 uint64_t moduleEnd = mem(state).vmmap().getModuleEndAddress(0x561104594156);
7 // moduleEnd == 0x561104598000, i.e. target ELF end

Listing 3.6: VirtualMemoryMap::getModule{BaseEnd}Address()

3.2.3 Disassembler

The disassembler APIs are wrappers over the capstone disassembly framework. It hides
all the low-level details of capstone’s C APIs, providing intuitive interfaces to the user.
Listing 3.7, 3.8 and 3.9 show some example uses of our disassembler APIs.

1 S2EExecutionState *state = ...;
2
3 std::optional<Instruction> insn = disas(state).disasm(0x401000);
4
5 if (insn) {
6 // Success.
7 } else {
8 // Failed.
9 }

Listing 3.7: Disassembling one instruction 0x401000.

1 S2EExecutionState *state = ...;
2
3 std::vector<Instruction> insns = disas(state).disasm("__libc_csu_init");
4
5 if (insns.size()) {
6 // Success.
7 } else {
8 // Failed.
9 }

Listing 3.8: Disassembling __libc_csu_init().

20

1 S2EExecutionState *state = ...;
2
3 std::vector<uint8_t> bytes = mem(state).readConcrete(0x401000, 0x100);
4 std::vector<Instruction> insns = disas(state).disasm(bytes, 0x401000);
5
6 if (insns.size()) {
7 // Success.
8 } else {
9 // Failed.

10 }

Listing 3.9: Disassembling 0x100 bytes starting at 0x401000.

3.2.4 Logging

The logging APIs from CRAXplusplus is slightly less verbose than that from S2E, as
shown in Listing 3.10.

1 S2EExecutionState *state = ...;
2
3 // The Logging APIs from S2E
4 g_s2e->getWarningsStream(state) << "hello\n"; // hello
5 g_s2e->getWarningsStream(state) << 0x1337 << '\n'; // 4919
6 g_s2e->getWarningsStream(state) << klee::hexval(0x1337) << '\n'; // 0x1337
7
8 // The Logging APIs from CRAXplusplus
9 log<WARN>(state) << "hello\n"; // hello

10 log<WARN>(state) << 0x1337 << '\n'; // 4919
11 log<WARN>(state) << klee::hexval(0x1337) << '\n'; // 0x1337

Listing 3.10: Logging in CRAXplusplus.

21

3.3 Signals and Hooks
S2E implements a typesafe callback system, libfsigc++. In this library, a signal represents
a certain type of event that can take place while the system is running. In addition, a
signal keeps a list of function pointers which decide what should be done when a signal
is emitted. Note that this has nothing to do with POSIX signals.

3.3.1 Symbolic RIP Handler

The first step toward implementing an exploit generator is installing the symbolic RIP
handler in the virtual machine. S2E 2.0 allows its plugins to install their own symbolic
RIP handlers through the signal ”s2e::CorePlugin::onSymbolicAddress”. In our case, our
handler, CRAX::onSymbolicRip(), is invoked when some symbolic bytes are being assigned
to RIP.

1 void CRAX::initialize() {
2 s2e()->getCorePlugin()->onSymbolicAddress.connect(
3 sigc::mem_fun(*this, &CRAX::onSymbolicRip));
4 }
5
6 void CRAX::onSymbolicRip(S2EExecutionState *state,
7 ref<Expr> symbolicRip,
8 uint64_t concreteRip,
9 bool &concretize,

10 CorePlugin::symbolicAddressReason reason) {
11 // ...
12 }

Listing 3.11: Installing a symbolic RIP handler in S2E.

3.3.2 Instruction Hooks

It would be nice if we could hook the target program at instruction level either before or
after an instruction is executed, so that we could automate dynamic analysis at instruction
level. Suppose we have two instruction hooks: CRAX::onExecuteInstructionStart() and
CRAX::onExecuteInstructionEnd(), we want them to be invoked before and after any
instruction of the target program is executed, respectively (as shown in Listing 3.12).

S2E does not provide a straightforward way to install instruction hooks from our
plugin code. In libs2ecore/include/s2e/CorePlugin.h, two sigc signals are provided: on-

22

TranslateInstructionStart and onTranslateInstructionEnd. Note that the dynamic binary
translator from QEMU translates and executes a block of instructions at a time, so we
must not confuse translation time with execution time. For this reason, connecting to
these two instruction translation signals is not enough to implement instruction hooks,
we also need to connect to the ExecutionSignals emitted by the translation signals.

1 // Invoked before executing any instruction of the target program.
2 void CRAX::onExecuteInstructionStart(S2EExecutionState *state, uint64_t pc) {
3 std::optional<Instruction> i = disas(state).disasm(pc);
4
5 if (!i) {
6 return;
7 }
8
9 // Execute the installed "before" instruction hooks.

10 beforeInstruction.emit(state, *i);
11 }
12
13 // Invoked after executing any instruction of the target program.
14 void CRAX::onExecuteInstructionEnd(S2EExecutionState *state, uint64_t pc) {
15 std::optional<Instruction> i = disas(state).disasm(pc);
16
17 if (!i) {
18 return;
19 }
20
21 // Execute the installed "after" instruction hooks.
22 afterInstruction.emit(state, *i);
23 }

Listing 3.12: Implementing before/after instruction hooks in S2E.

3.3.3 System Call Hooks

It would be even nicer if we could hook the target program at system call level, so that
whenever a system call is about to be made, or whenever a system call has finished, we
could collect whatever runtime information we’re interested in. Suppose we have two
system call hooks: CRAX::onExecuteSyscallStart() and CRAX::onExecuteSyscallEnd(),
we want the former to be invoked before the target program is about to make a system

23

call, and the latter to be invoked after the kernel has finished servicing the system call
and the CPU has returned to the user mode (as shown in Listing 3.13).

Implementing the ”before system call” hook is trivial: Before executing an instruction
i, we simply need to check if the mnemonic of i is syscall, and if it is, then invoke
CRAX::onExecuteSyscallStart().

Implementing the ”after system call” hook is trickier, because the completion of a
syscall instruction itself doesn’t imply the completion of the system call. Suppose a
syscall instruction at RIP = X has been executed, the next instruction to run is not the
one at RIP = X + 2 (Note: the opcode of x86_64 syscall is 0f 05), but some exception
handling instructions in the kernel. As a result, we must wait until the CPU has returned
from the kernel mode and is about to execute the instruction at RIP = X + 2. At that
point, the system call must have finished already, and we’ll be safe to collect the return
value from the RAX register at that execution state. Accordingly, we use an std::map to
schedule when CRAX::onExecuteSyscallEnd() should be invoked, as well as passing the
syscall number in RAX from a ”before” system call hook to a ”after” system call hook.

24

1 void CRAX::onExecuteInstructionStart(S2EExecutionState *state, uint64_t pc) {
2 std::optional<Instruction> i = disas(state).disasm(pc);
3
4 if (!i)
5 return;
6
7 if (pendingSyscalls.size()) {
8 auto it = pendingSyscalls.find(pc);
9 if (it != pendingSyscalls.end()) {

10 onExecuteSyscallEnd(state, pc, it->second);
11 pendingSyscalls.erase(pc);
12 }
13 }
14
15 if (i->mnemonic == "syscall")
16 onExecuteSyscallStart(state, pc);
17 }
18
19 void CRAX::onExecuteSyscallStart(S2EExecutionState *state, uint64_t pc) {
20 SyscallCtx syscall;
21 // Store the system call number and arguments in `syscall`...
22 pendingSyscalls[pc + 2] = syscall;
23
24 // Execute the installed "before" system call hooks.
25 beforeSyscall.emit(state, pending[pc + 2]);
26 }
27
28 void CRAX::onExecuteSyscallEnd(S2EExecutionState *state,
29 uint64_t pc,
30 SyscallCtx &syscall) {
31 // The kernel has finished serving the system call,
32 // and the return value is now placed in RAX.
33 syscall.ret = reg().readConcrete(Register::X64::RAX);
34
35 // Execute the installed "after" system call hooks.
36 afterSyscall.emit(state, syscall);
37 }

Listing 3.13: Implementing before/after system call hooks in S2E.

25

3.4 ROP Payload Builder
In this section, we present the internals of RopPayloadBuilder in CRAXplusplus. We
begin by defining the terminologies used throughout this section and the remainder of
this thesis, and then we discuss what exploit constraints are by reviewing some classical
binary exploitation techniques. Finally, we present our ROP payload chaining algorithms.

3.4.1 Definitions

A ROP gadget is a sequence of instructions that typically end with a ret instruction.
When multiple gadgets are chained together, the attacker may be able to perform actions
that are out of the program’s original specification and thereby execute arbitrary code.

We define a ROP gadget G as an ordered list of instructions ending with a ret
instruction, a ROP subchain S as an ordered list of gadgets, and a ROP chain C =

∑
S

as the full ROP chain. Their relationship can be expressed as: G ⊆ S ⊆ C.

Moreover, we use the term payload P to refer to all the data sent to the vulnerable
process, the term ROP payload PROP to specifically refer to the part of payload that
enables the vulnerable process to perform ROP, and the term exploit E to refer to the
exploit script. Their relationship can be expressed as: PROP ⊆ P ⊆ E.

Eventually, we define exploit constraints E as a set of constraints that will be used
to generate an exploit, where each exploit constraint e ∈ E is either a register constraint
or a memory constraint. Formally speaking, assume that we have register constraints
r1, r2, ...rx and memory constraints m1,m2, ...my, we define R = {ri : 1 ≤ i ≤ x},
M = {mi : 1 ≤ i ≤ y}, and E = R ∪M where ∀e ∈ E, (e ∈ R⊕ e ∈M).

3.4.2 Adding Register and Memory Constraints

Once the symbolic RIP handler has been triggered, we refer to the execution state at that
moment as a crashing state, to which we can add exploit constraints. The simplest
example is to add a register constraint to the RIP register, constraining (restricting)
it to a certain value we desire, say 0x41414141_41414141. Suppose this register con-
straint can be successfully added to the crashing state without any conflict, then we
can query the constraint solver for a new concrete input which –when fed into the tar-
get program– causes the program to crash with RIP = 0x41414141_41414141. Another
example is to add a memory constraint to a specific memory location. This is use-
ful because we can constrain the value at, say $rsp+8, to a value we desire such as
0x42424242_42424242, and then the constraint solver will give us a new concrete input

26

that causes 0x42424242_42424242 to be loaded at $rsp+8 when the program crashes.

We design and implement RopPayloadBuilder which provides two useful interfaces:
addRegisterConstraint() and addMemoryConstraint(). Listing 3.14 and 3.15 shows how
they are implemented in CRAXplusplus.

1 bool RopPayloadBuilder::addRegisterConstraint(S2EExecutionState &state,
2 Register::X64 r,
3 const ref<Expr> &e) {
4 // Concretize the given expression.
5 uint64_t value = evaluate<uint64_t>(e);
6 ref<ConstantExpr> ce = ConstantExpr::create(value, Expr::Int64);
7
8 // Build the constraint.
9 auto constraint = EqExpr::create(reg(&state).readSymbolic(r), ce);

10 return state.addConstraint(constraint, true);
11 }

Listing 3.14: RopPayloadBuilder::addRegisterConstraint().

1 bool RopPayloadBuilder::addMemoryConstraint(S2EExecutionState &state,
2 uint64_t addr,
3 const ref<Expr> &e) {
4 // Concretize the given expression.
5 uint64_t value = evaluate<uint64_t>(e);
6 ref<ConstantExpr> ce = ConstantExpr::create(value, Expr::Int64);
7
8 // Build the constraint.
9 auto constraint

10 = EqExpr::create(mem(&state).readSymbolic(addr, Expr::Int64), ce);
11 return state.addConstraint(constraint, true);
12 }

Listing 3.15: RopPayloadBuilder::addMemoryConstraint().

27

3.4.3 Querying the Solver for New Concrete Inputs

After adding extra constraints to the crashing state, we can ask the solver to give us a
new concrete input which satisfies the original path constraints and exploit constraints.
We use klee::ExecutionState::getSymbolicSolution() for this specific task. An example is
provided in Listing 3.16.

1 using VarValuePair = std::pair<std::string, std::vector<uint8_t>>;
2 using ConcreteInputs = std::vector<VarValuePair>;
3
4 S2EExecutionState *state = ...;
5 ConcreteInputs newInputs;
6
7 if (!state->getSymbolicSolution(newInputs)) {
8 log<WARN>() << "Could not get symbolic solutions\n";
9 return;

10 }
11
12 // Iterate over each byte of the first new concrete input.
13 for (const auto byte : newInputs[0].second) {
14 // ...
15 }

Listing 3.16: Querying the solver for new concrete inputs.

3.4.4 Exploit Constraints

Classical Scenarios

For return-to-shellcode attacks, the exploit constraints are formulated by: A) looking
for symbolic memory regions that is large enough to hold our shellcode, and B) redirecting
the control flow to our shellcode in memory. Particularly, return-to-stack is a specialized
version of return-to-shellcode attacks where the shellcode is injected on the stack.

For return-to-libc attacks, the exploit constraints differ across architectures. On x86
systems (figure 5a), we add two memory constraints: A) constrain $rsp to the address
of system() in libc.so.6, and B) constrain $rsp+8 to the address of the string ”/bin/sh”.
On x86_64 systems (figure 5b), we use the ”pop rdi; ret” gadget to set the rdi register
to the address of the string ”/bin/sh”, and then return to system() in libc.so.6. Note
that we currently assume ASLR to be disabled, so libc.so.6 is always loaded at a fixed
location known to the attacker. Suppose ASLR is enabled (which is very likely to happen

28

(a) Returning to system@libc on x86 (b) Returning to system@libc on x86_64

Figure 5: Return-to-libc on x86 and x86_64.

on modern linux systems), we have to additionally find a way to leak the base address of
libc.so.6 during exploitation, which is commonly done via I/O.

For return-to-csu [14] attacks, the exploit constraints are slightly more complicated.
On x86_64, the first, second and third arguments of a function are passed via RDI, RSI,
RDX registers, respectively. Sometimes gadgets such as ”pop rsi; ret” and ”pop rdx; ret”
do not exist in the binary program, and under such circumstances we will not be able to set
the second and third argument when returning to a specific function. This is what makes
return-to-csu useful, as it allows us to control EDI, RSI and RDX via the gadgets in
__libc_csu_init() and then return to any address we want. Recall the example in Figure
5b, we can achieve the same thing via return-to-csu, as shown in Figure 6.

Figure 6: Return-to-csu on x86_64.

29

Conclusively, to construct exploit constraints from one of these attacks, we need to
(1) add some register and memory constraints to the crashing state, (2) query the solver
for a concrete input which satisfies all these constraints, and (3) use this concrete input
as the exploit. Take Figure 6 for example, the first QWORD must be placed in RIP,
the second QWORD at RSP+0, the third QWORD at RSP+8, the fourth QWORD at
RSP+16, and so on. Moreover, we need to maintain a variable RSP offset and increment
it by 8 (i.e. sizeof(size_t)) for each memory constraint added to the crashing state.

Stack Pivoting

What if we want to chain multiple techniques together? What if the overflown stack
buffer isn’t large enough to hold the entire ROP chain in a single place? In this case, the
exploit needs to perform stack pivoting, and two questions arise accordingly:

• Q1) Is the constraint solver still needed after stack pivoting?
• Q2) What should we do with the RSP offset after stack pivoting?

To answer these questions, we consider: unexploitable (500 pts), a CTF challenge
from pwnable.tw, whose source code, disassembly and checksec results are shown in Fig-
ure 7. In this challenge, the program reads 0x100 bytes from stdin, resulting in a potential
overflow in the 4-byte stack buffer. What makes this challenge difficult is that the proce-
dure linkage table (PLT) of the target program doesn’t contain something like write@plt
or printf@plt, so the attacker cannot easily leak the runtime base address of libc.so.6
through stdout. Nevertheless, it is still possible to exploit this binary: In libc.so.6, there’s
a syscall gadget in __read(), as shown in Figure 8. If we use return-to-csu to invoke
read(0, &GOT[’read’], 1), partially overwriting the least significant byte of GOT[’read’]
to the offset of that syscall gadget, then all subsequent calls to read@plt will execute the
syscall instruction. All in all, the steps to exploit this binary are:

• read(0, &GOT[’read’], 1), setting RAX to 1.
• syscall<1>(1, 0, 0), setting RAX to 0.
• syscall<0>(0, elf.bss(), 59), reading ”/bin/sh”.ljust(59) to .bss.
• syscall<59>(”/bin/sh”, 0, 0), spawning a shell.

Unfortunately, the three gadgets ”pop rdi ; ret”, ”pop rsi ; ret” and ”pop rdx ; ret”
do not exist in the target binary, but if we use return-to-csu to set the arguments and
invoke the above functions in that specific order, the entire ROP chain will be too large
to fit in the overflown stack buffer. Consequently, the 1st-stage ROP subchain needs to:
(1) write the 2nd-stage ROP payload to somewhere readable and writable, as well as (2)
set RSP to that location so that we can continue to perform ROP there. For (1), we can

30

Figure 7: The unexploitable CTF challenge from pwnable.tw.

Figure 8: The syscall gadget in __read() from libc.so.6.

use return-to-csu to finish the job. For (2), there are two useful gadgets that usually exist
in a function epilogue: ”pop rbp ; ret” and ”leave ; ret” (Note that ”leave” is equivalent
to ”mov rsp, rbp ; pop rbp”).

Now, back to the questions we’ve raised. For the first question: Is the constraint
solver still needed after stack pivoting? Before stack pivoting, yes, we certainly need
the constraint solver to generate the 1st-stage ROP payload. Imagine that if we do not
have access to a solver, how do we know where to replace the ROP payload into the PoC
input? LAEG [22] searches the PoC input for the corrupted RIP’s offset, and replaces the
ROP payload directly into that offset. The downside of this solution is that (1) it isn’t
resistant to input transformations, and (2) it doesn’t know whether the part of the input
it has modified will change the original execution path.

After stack pivoting, it depends. For the example from Figure 7, we use read() to write
the 2nd-stage ROP subchain into .bss, and thus no input transformations are involved.
Suppose we have a special version of read() which somehow transforms the input, then
we’ll need the solver to generate the 2nd-stage ROP payload as well. In this thesis, we
assume that a straightforward arbitrary write primitive (e.g., read@plt) exists in the target

31

program, and hence we don’t use the solver to generate the 2nd-stage ROP payload.

For the second question: What should we do with the RSP offset after stack
pivoting? The answer is simple: We should reset the RSP offset to zero, and continue to
increment it by 8 for each memory constraints added afterwards. We’ll explain the reason
for this in the next subsection.

Figure 9: Two-stage stack-pivoting ROP payload.

3.4.5 Internal Representation

Internal Representation of an Exploit Constraint

Figure 10: KLEE’s Expr Tree.

Recall the example from Figure 6, each exploit con-
straint is either a reigster constraint or a memory con-
straint, and can be written as an expression. Further-
more, an expression can be represented by a S-Expr bi-
nary tree. If we traverse a S-Expr binary tree in pos-
torder, then we can evaluate the expression to a con-
stant. On the other hand, if we traverse it in inorder,
then we can build an infix expression string from it.

KLEE’s Expr library is essentially a tree library, so we use it to build S-Expr binary
trees. Figure 11 presents the class hierarchy of klee::Expr, where a leaf node is represented

32

by a klee::ConstantExpr and an internal node is represented by a klee::NonConstantExpr,
as shown in Figure 10. Note that klee::Expr is the abstract base class from which all the
expr subclasses derive.

Figure 11: The class hierarchy of klee::Expr.

Figure 12a is an example ROP payload consisting of multiple expressions, where each
expression will be used to construct either a register constraint or a memory constraint.
Let’s take the expression highlighted in red for example, the corresponding S-Expr binary
tree is shown in Figure 12b. A leaf node stands for either a constant or a symbol from an
ELF, and an internal node represents a binary operator.

(a) The stack of a user process filled with
ROP payload

(b) A S-Expr binary tree representing a QWORD

Figure 12: Representing an exploit constraint as a S-Expr binary tree.

33

Internal Representation of a Technique’s ROP Payload Formula

In our system model, each exploitation technique contains exactly one ROP payload
formula. A ROP payload formula F of a technique is represented as a two-dimensional
list of S-Expr trees, where each f ∈ F is a one-dimensional list of S-Expr trees, and each
t ∈ f is an S-Expr tree. Please refer to Figure 13 for an illustration.

Figure 13: The internal representation of the ROP payload formula of a technique.

3.4.6 Chaining the ROP Payload from Multiple Techniques

Exploiting a binary often requires multiple exploitation techniques to be chained together.
Assume that we have an ordered list of exploitation techniques Ω = [T0, T1, ..., Tn−1], then
we also have an ordered list of ROP payload formulae Γ = [F0, F1, ..., Fn−1], where each
Ti corresponds to Fi (and vice versa) for 0 ≤ i ≤ n − 1. The task of RopPayloadBuilder
is to chain all the formulae from Γ into a single formula F ′, and pass F ′ to the exploit
generator.

We design two modes for chaining: (1) symbolic mode and (2) direct mode. In
the case where a stack pivoting technique TS exists in Γ, and let the index of TS ∈ Γ be
k, we use the symbolic mode to generate the 1st-stage ROP payload from

∪k
i=0 Fi and

the direct mode to generate the 2nd-stage ROP payload from
∪n−1

i=k+1 Fi. Otherwise, we
use the symbolic mode to process all the formulae in Γ since stack pivoting needs not to
be performed.

The symbolic mode, as its name suggests, involves the use of the constraint solver.
To symbolically chain a given ROP payload formula FNEW with the current result F ′, for

34

each t ∈ FNEW [0], we (1) traverse t in post-order and evaluate t to a klee::ConstantExpr
c, (2) construct a register or memory constraint e from t depending on the index of t in
f , and (3) add e to the crashing state. Moreover, if the current technique can result in a
change in RSP at exploitation time, then we (4) query the solver for a concrete input c
and append {c} to F ′, (5) switch to direct mode, and (6) chain

∪n−1
i=1 Fi in direct mode.

Algorithm 1: RopPayloadBuilder::chainSymbolic()
input : S: The current S2EExecutionState.

F ′: The current result, i.e. currently built ROP payload formula.
TNEW : The next technique to be chained at the end of F ′.
δ: RSP offset.

output : A boolean indicating if chaining has succeeded.
1 FNEW ← get the ROP payload formula of TNEW .
2 rsp← mem(S).readConcrete(RSP);
3 for i← 0 to length(FNEW [0]) do
4 expr ← FNEW [0][i];
5 if i = 0 then
6 ok ← addRegisterConstraint(S,RBP, expr);
7 else if i = 1 then
8 ok ← addRegisterConstraint(S,RIP, expr);
9 else

10 ok ← addMemoryConstraint(S, rsp+ δ, expr);
11 δ ← δ + 8;
12 if ¬ ok then
13 return false;

14 if FNEW [0] = ∅ then
// Calculate the 1st-stage ROP payload at exploitation time.
// This will be explained later in section 3.6.1: I/O states.

15 F ′.append(∅);
16 else if stage1← getOneConcreteInput(S) then

// Calculate the stage1 ROP payload at exploit generation time.
17 F ′.append([ByteVectorExpr::create(stage1)]);
18 else
19 return false;
20 F ′.append(∅);
21 if TNEW will trigger a change in RSP at exploitation time then
22 switch to the direct mode, and set δ ← 0.
23 chain

∪length(FNEW)−1
i=1 FNEW [i] at the end of F ′ in direct mode.

24 return true;

35

The direct mode doesn’t involve the use of the constraint solver. To directly chain
a given ROP payload formula FNEW with the current result F ′, we just need to shallowly
copy the S-Expr trees and append them to the end of F ′. However, we need to pay
attention to a few things: (1) For the ROP payload formula F of any technique, F [0][0]

is always reserved for RBP constraint, while F [0][1] is reserved for RIP constraint, so
if we’re not chaining in the direct mode for the first time, we need to skip F [0][0]. (2)
We need to make sure that after the current ROP chain is executed, RSP points to
our next ROP payload in memory. A way to tackle this problem is to perform stack
pivoting multiple times, where each ROP subchain sets RSP to the address of its next
ROP payload. Another way is letting each ROP subchain write the next ROP payload
next to the current one, so that eventually all the directly chained 2nd-stage ROP payload
are placed sequentially in the memory without any gap. We adopt the second approach,
as shown in Figure 14.

Figure 14: Chaining ROP payload in direct mode.

Previously, we’ve said that after stack pivoting, the RSP offset will be reset to zero
and incremented by 8 for each memory constraints added afterwards. The reason should
be clear to the reader now: We use it generate the second arguments of read(), stitching
2nd-stage ROP payload together.

36

Algorithm 2: RopPayloadBuilder::chainDirect()
input : S: The current S2EExecutionState.

F ′: The current result, i.e. currently built ROP payload formula.
TNEW : The next technique to be chained at the end of F ′.
δ: RSP offset.

1 FNEW ← get the ROP payload formula of TNEW .
2 δNEW ← δ;
3 i← 0;
4 j ← 0 if this is the first time we’re chaining in direct mode else 1;
5 while i < length(FNEW) do
6 if FNEW [i] = ∅ then
7 continue;
8 while j < length(FNEW [i]) do
9 expr ← FNEW [i][j];

10 if expr is the 2nd argument of a call to read() then
11 expr ← the offset of the next ROP payload relative to δ.
12 F ′.append(expr);
13 δNEW ← δNEW + length(expr);
14 j ← j + 1;
15 if i ̸= length(FNEW)− 1 then
16 F ′.append(∅);
17 i← i+ 1;
18 j ← 0;

19 F ′.append(∅);
20 δ ← δNEW ;

37

3.5 Techniques

A technique in CRAXplusplus represents a particular binary exploitation technique and
contains a ROP payload formula. Each technique in CRAXplusplus derives from the
abstract base class, Technique, as shown in Figure 15. Most importantly, each concrete
technique must override the pure virtual function Technique::getRopPayload() and return
its own ROP payload formula.

Figure 15: Inheritance diagram for the techniques in CRAXplusplus.

3.5.1 Ret2csu

Return-to-csu [14] is a technique which allows an attacker to control EDI, RSI and RDX
and return to any address by taking advantage of the gadgets in __libc_csu_init(). This
technique is particularly useful when a x86_64 linux binary doesn’t give us the ROP
gadgets to set RDI, RSI and RDX registers. Figure 16 illustrates the return-to-csu ROP
chain used by our system. There are two things we need to clarify: (1) Why does return-
to-csu allow us to control the EDI, RSI and RDX registers? (2) In gadget 2, there’s a call
instruction (highlighted in red), and what should we do about it?

38

Figure 16: Ret2csu ROP chain.

Firstly, return-to-csu allows us to control EDI, RSI and RDX because they are prop-
agated from R15d, R14 and R13, respectively. In gadget 1, we can set the values of R15,
R14 and R13 by popping the stack.

Secondly, the call instruction in gadget 2 (highlighted in red) will call the function
at [r12+rbx*8]. We have two choices: Either make it call a function in the GOT or
make it call _fini(), a function which usually doesn’t modify EDI, RSI and RDX. In
CRAXplusplus, we always go with the latter since it’s more flexible than the former. We
(1) look for a guest memory location X which holds the address of _fini(), (2) set R12 to
X, and (3) set RBX to 0, so that call QWORD PTR [r12+rbx*8] evaluates to call _fini().
Besides, we set RBP to 1, so that jne gadget2 won’t branch to gadget 2. Eventually we’ll
reach the ret instruction, and now we can return to any address we want other than a
function in the GOT.

As a side note, the instructions constituting __libc_csu_init() can vary across differ-
ent versions of compilers, which affects how EDI, RSI and RDX must be set, as shown
in Figure 17. In order to ensure the generated ROP payload works correctly on the tar-
get binary, we perform automated static analysis on the target binary by parsing the
instructions in __libc_csu_init().

Finally, any other technique is free to embed the ROP payload formula of Ret2csu
in its own one. We provide an overloaded version of Ret2csu::getRopPayloadFormula()
with additional parameters to let the caller specify the values of RDI, RSI, RDX and the
return address, so that adding a custom technique becomes easier.

39

Figure 17: __libc_csu_init() generated by different versions of GCC.

1 auto ret2csu = g_crax->getTechnique<Ret2csu>();
2 RopPayload payload = ret2csu->getRopPayload(
3 ConstantExpr::create(ret, Expr::Int64),
4 ConstantExpr::create(rdi, Expr::Int64),
5 ConstantExpr::create(rsi, Expr::Int64),
6 ConstantExpr::create(rdx, Expr::Int64))[0];

Listing 3.17: Usage of Ret2csu::getRopPayload().

3.5.2 BasicStackPivoting

This technique explicitly invokes read() using Ret2csu to write the 2nd-stage ROP payload
to the pivot destination, and then sets RSP to the pivot destination using two ROP
gadgets that usually exist in a function epilogue: ”pop rbp ; ret” and ”leave ; ret”, as
shown in Figure 14.

40

3.5.3 AdvancedStackPivoting

This is a stack pivoting technique specialized for read(). When the target program has
a call site of read() which overflows a stack buffer and overwrites RBP and RIP, then
this technique can be used. Even though the initially overflown buffer is limited in size,
eventually we’ll still be able to perform return-to-csu. Listing 3.18 shows a minimal
example where AdvancedStackPivoting can be used.

1 int main() {
2 char buf[0x20];
3 read(0, buf, 0x30);
4 }

Listing 3.18: Example scenario of AdvancedStackPivoting.

Figure 18: The disassembly of Listing 3.18.

Step 1

Please refer to Figure 18 which shows the disassembly for Listing 3.18, and let the pivot
destination be X. After we’ve successfully hijacked RBP and RIP for the first time, set
RBP to X and set RIP to 0x401142.

Step 2

The program has returned from main(), and at this point, RBP =X and RIP = 0x401142.
Apparently, we’ll have one more chance to send up to 0x30 bytes to the target process
before it returns from main() again. In addition, when the leave instruction at 0x40115d
is executed, the value of RBP will be copied into RSP, making RSP = X. In addition, set
RBP to X+8+0x20 (0x20 corresponds to the stack-buffer size) and set RIP to 0x401142.

41

Step 3

The program returns from main() again, and we’ll have another chance to send up to
0x30 bytes to the target process. Now, we have control over RBP, RSP and RIP, as
shown in Figure 19. Note that this time the program will call read@plt but never return,
because when the syscall instruction within __read() in libc.so.6 is executed, it effectively
executes sys_read(0, RSP, 0x30). See Figure 20, the input bytes will be placed exactly
at RSP, so the return address of __read() will be overwritten by our input bytes.

Figure 19: The program will call read@plt but never return.

Figure 20: __read() in libc.so.6 invokes sys_read(0, RSP, 0x30).

Step 4

Recall step 3, we were able to send up to 0x30 bytes, and the bytes we send will be placed
exactly at RSP. Now the question is: What should we do with these 0x30 bytes?

Our solution is illustrated in Figure 21. Normally, in __libc_csu_init(), there’s a
ROP gadget: ”pop rsi ; pop r15 ; ret” which can be used to set RSI. Keep in mind that
since we’ve just executed a sys_read(0, RSP, 0x30), we only need to modify RSI, and

42

leave RDI and RDX untouched. We can set RSI to RSI+0x30 and return to read@plt, so
that the process allows us to send up to 0x30 bytes again and places them at RSI+0x30.
In addition, setting RSI and returning to read@plt only takes 0x20 bytes, so each time we
gain extra 0x10 bytes. If we keep using these 0x10 bytes to save up space, we’ll eventually
have enough space to hold a full return-to-csu ROP payload, and then we can chain with
other techniques.

Figure 21: Accumulating space for one ROP payload of return-to-csu.

43

3.5.4 Ret2syscall

If the target binary contains a gadget: ”syscall ; ret”, then we can use it to directly invoke
system calls. In addition, if another gadget: ”pop rax ; ret” also exists, then we can easily
set the system call number to the one we would like to invoke.

Unfortunately, such gadgets usually do not exist within the target binary, so we need
to leak the libc base and spawn a shell using the gadgets from libc.so.6. However, if the
target binary contains a call site of read(), then there’s a shortcut which doesn’t require us
to leak the libc base. We can partially overwrite the least significant byte of GOT[’read’]
with the offset of the syscall instruction in __read() from libc.so.6.

For instance, Figure 22 shows the disassembly of __read() from libc 2.24, and with
an ELF dynamically linked with libc 2.24, GOT[’read’] contains the runtime address of
__read() from libc, say, 0x00007f2c1c3fb900. We can overwrite its least significant byte
with 0x0e so that subsequent calls to read@plt will directly exeucte the syscall instruction
in __read(). As for what to do next, we’ve already discussed earlier in section 3.4.4.

Nevertheless, this technique has its own limitation. Figure 23 shows the disassembly
of __read() from libc 2.31, and apparently if we only overwrite the least significant byte
of GOT[’read’], then it will point to somewhere else other than the syscall instruction in
__read(). CRAXplusplus currently doesn’t support such cases.

Figure 22: The syscall instruction in __read() from libc 2.24.

Figure 23: The syscall instruction in __read() from libc 2.31.

44

3.5.5 GotLeakLibc

When the target program is compiled with Full RELRO, then Ret2syscall is infeasible as
the GOT is read-only. Under such circumstances, we rely on puts@plt or printf@plt to
leak a libc address from the GOT to stdout, and use the leaked libc address to recover
the libc base.

3.5.6 OneGadget

OneGadget [5] is a tool developed by @david942j and was presented at HITCON 2017.
Given a particular version of libc.so.6, this tool utilizes symbolic execution to find the
gadgets that can lead to execve(’/bin/sh’, NULL, NULL).

Figure 24 shows the output when we run one_gadget on libc 2.31. The first line
highlighted in red ”0xe3b2e execve(...)” describes a ”one gadget”, and is followed by
several lines describing its constraints. Take the first one gadget for example, we can
satisfy the constraint by setting both r15 and r12 to 0, and then return to 0xe3b2e. This
is only useful after we’ve leaked the libc base. In CRAXplusplus, the OneGadget technique
is implemented by parsing the output of one_gadget using regular expression matching.

Figure 24: Running one_gadget on libc 2.31.

45

3.6 Modules

A module is to CRAXplusplus as a plugin is to S2E. Our system allows the user to add
custom modules, where each module has full access to the APIs and hooks mentioned
in section 3.2. Each module in CRAXplusplus derives from the Module abstract base
class, as shown in Figure 25. A module collects additional runtime information, and
can override the default exploit generator (to be discussed in the next section) with the
collected information.

Figure 25: Inheritance diagram for the modules in CRAXplusplus.

3.6.1 I/O States

IOStates is a module available in CRAXplusplus. When loaded, it enables our system
to generate exploit scripts which bypass various binary protections (e.g., ASLR, PIE and
canary) for CTF binaries with stack-based vulnerabilities. Originally, it was designed and
implemented in LAEG [22], an automatic exploit generation system built on the Qiling
framework [9] using taint analysis. We ported it to S2E and adapt its methodology to
S2E’s multi-path analysis environment. In a nutshell, this module involves the following
concepts: (1) input and output states, (2) uninitialized buffer analysis, and (3) leak
detection.

We begin by defining input states and output states. An input (execution) state is
defined as the execution state right before a read system call is executed, whereas an

46

output (execution) state is defined as the execution state right after a write system call
is executed. We hook all the read and write system calls made by the target process to:
(1) collect additional runtime information at input and output states, and (2) customize
the behavior of the exploit generator using the collected information.

Background

Let’s take the program from Listing 3.19 as an example. In this scenario, ASLR and
PIE are both enabled. This program allocates a stack buffer of 0x20 bytes without zero
initialization, read() some bytes into the buffer, and printf() the buffer’s content to stdout.
If we set a breakpoint at line 3 (at this point, read() will not have been called yet) and
use gdb to examine the content in the guest memory region [buf, buf+0x80), we’ll notice
that it contains some rubbish values (see Figure 26). These rubbish values, while being
seemingly harmless, are potentially useful from a hacker’s PoV. Consider the address
0x55affab3d1f0 located at buf+0x8, if we provide 8 * ’A’ as the input to this program,
then besides the eight ’A’, 0x55affab3d1f0 will also be printed to stdout in the form of
little-endian bytes: ”f0 d1 b3 fa af 55”.

1 // ASLR, NX, PIE, Canary, Full RELRO.
2 int main() {
3 char buf[0x20];
4 read(0, buf, 0x80);
5 printf("%s\n", buf);
6 }

Listing 3.19: A program with information leak vulnerability.

Figure 26: The uninitialized guest memory region from Listing 3.19.

47

Figure 27: The VirtualMemoryMap of the process from Listing 3.19.

Once a randomized address has been leaked, we can look up the virtual address map
(see Figure 27) to find the associated module to which this address belongs. In this ex-
ample, 0x55affab3d1f0 belongs to the module /home/aesophor/Code/out which is loaded
at 0x55affab3c000. Keep in mind that ASLR and PIE only randomize the base address
of a loaded module, so the same symbol within the same module will always have the
same offset no matter where the module is loaded at. Accordingly, the next time we use
the same input offset to leak a randomized address Y , the offset of Y within /home/ae-
sophor/Code/out is given by X = 0x55affab3d1f0 - 0x55affab3c000, and the base address
of this module can be obtained by: Y −X. We can now easily deduce the runtime address
of any other symbol within this module, which facilitates further attacks.

Input State and Uninitialized Buffer Analysis

At an input state, we perform uninitialized buffer analysis (i.e. leak analysis).
Before the target process executes read(0, buf, size), we search the guest memory region
[buf, buf+size) of sensitive QWORDs, inclusive of: (1) the stack canary, and (2) any
virtual address which belongs to a mapped region.

In LAEG and CRAXplusplus, we define five ”leak types”: code, libc, heap, stack, and
canary. Besides, we save the offsets that can lead to information leak in a table where
the offsets are categorized by leak types. We’ll refer to such a table as a leakable input
offsets table. Recall the example from Figure 26, we visualize the result of leak analysis
in table 1. For each sensitive QWORD found, we calculate its offset from buf and save the
offset in the table. Later on, if we trim our input to, say, 0x38 bytes, then our input will

48

be connected with 0x7f1fd821f0b3, resulting in that randomized being printed to stdout
as well. In general, this approach works for every leak type except canary. To leak the
stack canary, we must additionally add 1 to the offset, because the first byte of a canary is
always a NULL byte which will stop ”%s” from printing further. All in all, the pseudocode
of leak analysis is shown in algorithm 3.

Table 1: The leakable input offsets table for Figure 26.

LeakType Offsets
code buf+0x8, buf+0x18, buf+0x58, buf+0x60, buf+0x70
libc buf+0x38
heap
stack buf+0x20, buf+0x48, buf+0x78
canary buf+0x28

Algorithm 3: IOStates::analyzeLeak()
input : S: The input S2EExecutionState.

buf : The base address of the target buffer.
len: The maximal number of bytes to read into buf.

output : bufInfo: The leakable input offsets table.
1 vmmap ← mem(S).vmmap();
2 canary ← getCanary();
3 bufInfo ← {};
4 for i← 0 to len by 8 do
5 bytes← mem(S).readConcrete(buf + i, 8);
6 value← u64(bytes);
7 if value = canary then
8 bufInfo[LeakType::CANARY].append(i);
9 else

10 foreach region ∈ vmmap do
11 if value ≥ region.start ∧ value ≤ region.end then
12 bufInfo[getLeakType(region)].append(i);

13 return bufInfo;

49

Output State and Leak Detection

At an output state, we perform leak detection (i.e. leak verification). After the target
process executes write(1, buf, size), we search the guest memory region [buf, buf+size) of
sensitive QWORDs, inclusive of: (1) the stack canary, and (2) any virtual address which
belongs to a mapped region.

Due to the limitation of puts() and ”%s” in printf(), if the value to be leaked contains
a NULL byte, then it will not be fully written to stdout. As a result, it is necessary to
perform leak verification regarding the offsets we’ve collected during leak analysis, as we
need to distinguish between the useful offsets from the useless ones.

Algorithm 4 describes the procedure of leak detection. You’ll notice that it is very
similar to the procedure of leak analysis, except a few things: (1) This time, the outermost
for loop increments i by 1 instead of by 8, because the leaked address is not necessarily
8-byte aligned. (2) At line 11, we additionally mask value with 0xffff’ffff’ffff. To explain
why we do this, let’s consider the program from Listing 3.20. This example program is
slightly modified from Listing 3.19: we make the format string slightly more complicated
this time. At line 4, the format string ”%s” is followed by the string ”. Your comment:
”. In this case, the little-endian bytes of the leaked address will be immediately followed
by ”. Your comment: ”, and if we fetch 8 bytes at a time, we’ll need to apply the mask to
filter out the irrelevant bytes. Finally, this algorithm returns a list of leak information,
where each element ⟨ bufIndex, baseOffset, leakType ⟩ in the list describes how the leaked
data can be used.

• bufIndex - the index of the leaked data within the output byte array buf.
• baseOffset - the offset to subtract from the leaked data to recover a module’s base

address.
• leakType - the leak type.

1 // ASLR, NX, PIE, Canary, Full RELRO.
2 int main() {
3 char buf[0x20];
4 read(0, buf, 0x80);
5 printf("Hello, %s. Your comment: ", buf);
6 }

Listing 3.20: A program with information leak vulnerability.

50

Algorithm 4: IOStates::detectLeak()
input : S: The output S2EExecutionState.

buf : The base address of the target buffer.
len: The maximal number of bytes to write from buf.

output : leakInfo: A list of leak information.
1 vmmap ← mem(S).vmmap();
2 canary ← getCanary();
3 leakInfo ← [];
4 for i← 0 to len do
5 n← min(len - i, 8);
6 bytes← mem(S).readConcrete(buf + i, n);
7 value← u64(bytes);
8 if value = canary then
9 leakInfo.append((i + 1, 0, LeakType::CANARY));

10 else
11 value← value & 0xffff’ffff’ffff;
12 foreach region ∈ vmmap do
13 if value ≥ region.start ∧ value ≤ region.end then
14 baseOffset ← value - vmmap.getModuleBaseAddress(value);
15 leakType ← getLeakType(region);
16 leakInfo.append((i, baseOffset, leakType));

17 return leakInfo;

Verifying Leakable Input Offsets under Multi-Path Execution Environment

After performing leak analysis at an input state, we’ll obtain a leakable input offsets
table. Recall the example from table 1, each leak type corresponds to a list of potentially
leakable input offsets, namely, if we trim the input to that offset, the target program
might leak something sensitive to stdout.

Now we describe how we can verify these leakable input offsets in S2E’s multi-path
execution environment. Firstly, we pick a leak type we wish to proceed with. Secondly,
for each potentially leakable input offset X of that leak type, we unconditionally fork the
current input state S, obtaining a forked input state S ′. Finally, we modify S ′ by rewriting
the third argument of sys_read() to X. Later on, at an output state OS′ following S ′,
IOStates::detectLeak() will notify us if information leak really occurs at OS′ .

Refer to Figure 28. In this example program, the sequence of I/O states is: [O1, I1, O2, I2],
where Oi is an output state and Ii is an input state. At the input state I1, suppose
IOStates::analyzeLeak() finds out that the stack canary is placed at buf+X, then we will
(1) fork I1, (2) obtain a forked input state I ′1, and (3) modify I ′1 by rewriting the RDX

51

register to X, which effectively rewrites the len argument of read() and thereby trims the
input. Later on, as I ′1 hits the output state O′

2 and writes a sequence of bytes to stdout,
IOStates::detectLeak() will tell us the offset of the leaked canary within the output bytes,
so that our exploit script knows where to extract the leaked stack canary from the output.

Figure 28: I/O states in S2E’s multi-path execution environment.

As we unconditionally fork states at each input state I, sibling(s) of I will be created,
and finally an execution tree will be formed. Formally, for an execution tree T , we define:
(1) an execution state S as a node of T , (2) the initial execution state S0 as the root
of T , and (3) an execution path P as a finite sequence of edges connecting S0 and any
execution state S where S ̸= S0.

Building Per-Path I/O States Sequences

For each execution path P ∈ T , we use the results of leak analysis and leak detection to
build its own list of I/O StateInfo ΦP , where each φ ∈ ΦP can be either an InputStateInfo
or OutputStateInfo. An InputStateInfo is denoted by: ⟨ len ⟩, whereas an OutputStateInfo
is denoted by: ⟨ isInteresting, bufIndex, baseOffset, leakType ⟩.

Before executing a read(0, buf, len), we perform leak analysis, and after the read
system call finishes we append ⟨ len ⟩ to ΦP which indicates that the input should be
trimmed to len bytes at this input state in order to trigger information leak. On the other
hand, after executing a write(1, buf, len), we perform leak detection, obtaining a list of
leak information (as described in algorithm 4). If nothing has been leaked, we append
⟨ false, ?, ?, ? ⟩ to ΦP , otherwise append ⟨ true, bufIndex, baseOffset, leakType ⟩ to ΦP .

52

To implement these in S2E, we connect to the before system call hooks and the after
system call hooks introduced in section 3.3.3.

Note that ΦP must be path-specific because different execution paths can have different
progresses of leaking. What’s more, instead of keeping the entire execution state in ΦP ,
we only extract and save the runtime information we need to ΦP in order to conserve
memory.

Suppressing State Explosion at Leak Detection

When performing leak detection at an output state, we hook write(1, buf, len). In theory,
after write() returns, IOStates::detectLeak() will tell us if anything sensitive has been
leaked to stdout. However, in practice, write() will usually fail to finish because buf
is likely to contain some symbolic bytes, which in turn causes state explosion before
the process has even called write(). The reason is that functions such as puts() and
printf(”%s”, buf) will loop over the bytes in buf until a NULL byte is found, and for each
iteration a branch instruction involving a symbolic operand is executed, causing S2E to
fork the state at that moment. What’s worse, these symbolic bytes will usually propagate
through libc and the OS console driver, so even more state forks will be made, resulting
in state explosion.

Now, the question is: should we mark the input as symbolic or not? If we mark the
input as symbolic, then we’ll most likely to run into state explosion during leak detection.
On the other hand, if we do not mark the input as symbolic, then onSymbolicRip() will
never be triggered. To break the dilemma, we (1) disallow S2E to fork states except for
canary-checking branch instructions, but (2) allow CRAXplusplus to freely fork states.
While this prevents S2E from proactively exploring unvisited paths, the path constraints
determined by the PoC input will still be collected, so exploit generation will not be
affected.

In order to make an exception for the canary-checking branch instructions, we must
be able to identify a canary-checking branch instruction. To do this in S2E, we connect
to onStateForkDecide, a signal which is guaranteed to be emitted whenever a branch
instruction is executed. When this signal is emitted, we lookahead the current instruction,
checking if the next instruction is call __stack_chk_fail@plt, as shown in Figure 29.
If a state fork is caused by a canary-checking branch instruction, then we allow the fork.
Otherwise, we only allow the fork if it is performed by CRAXplusplus.

Let’s take Figure 28 as an example, and this time we assume that 0x440 * ’A’ are
fed into the target program and that the stack canary is overwritten with our input.

53

Figure 29: Identifying a canary-checking branch instruction.

As described just before, whenever a canary-checking branch instruction is executed, we
allow S2E to fork the state S at that moment, producing another state S ′ which satisfies
the canary constraints. Namely, in S, the canary at rbp−8 is overwritten with our input,
while in S ′, S2E will replace the wrong stack canary at rbp − 8 with the correct one for
us. As a result, the original state S will eventually hit __stack_chk_fail(), whereas the
forked state S ′ will pass the canary check and trigger onSymbolicRip(). Finally, once
S ′ has triggered our symbolic RIP handler, we can add our exploit constraints to S ′ as
usual, and the solver will be able to give us a concrete input that satisfies the stack canary
constraints as well as the exploit constraints.

Intercepting the Stack Canary of the Target Process

Since both leak anlysis and leak detection require the value of the stack canary of the
target process, we must come up with a way to intercept the stack canary of the target
process in S2E. Normally, when the stack canary is enabled, the process loads the stack
canary from [fs:0x28] to [rbp-8] in a function prologue, as shown in Figure 30. After such
an instruction is executed, the canary will be loaded into RAX. As a result, we use the
after instruction hook to hook such a instruction, intercepting the stack canary from
RAX.

Figure 30: Intercepting the stack canary of the target process.

Integrating I/O States With the Constraint Solver

While we haven’t introduced the exploit generator (to be discussed later in chapter 3.7),
if we start implementing one at this point, we should be able to make CRAXplusplus
generate exploit scripts that can leak the stack canary and the ELF base, as shown in

54

Figure 31. Keep in mind that these sensitive data are leaked at exploitation time (which
is analogous to runtime), but we only have access to the solver at exploit generation time
(which is analogous to compile time).

Figure 31: A generated exploit script with information leak capabilities.

There’s one more thing we need to pay attention to: At exploit generation time
(which is analogous to compile time), the target process has a stack canary value C, but
at exploitation time (which is analogous to runtime) it will have another stack canary
value C ′. We must not use C to generate the 1st-stage payload, otherwise the generated
exploit script will not be replayable. Instead, at exploit generation time, we must look
for the input offset that can leak C ′ during exploitation time, and use C ′ to generate the
1st-stage payload. This concept also applies to other leak types.

To achieve this, once the exploit script has successfully leaked C ′, our exploit script
will launch CRAXplusplus again, but this time it overrides the guest canary with C ′.
Afterwards, when a state fork is performed at a canary branch, we rewrite the canary
constraint with C ′. More specifically, in S2E, we connect to onStateForkDecide signal to
determine when a state fork should be permitted. From the definition of onStateForkDe-
cide (see Listing 3.21), we can see that the branch condition is passed by const reference to
the signal handlers. Therefore, we can use const_cast to drop its const qualifier and sub-
stitue C ′ for this condition (actually, it’s the canary constraint). This is how we override
the guest canary with C ′. On the other hand, overriding the guest ELF base E with the
leaked ELF base E ′ is pretty much the same, except that we are not required to modify
any branch constraint this time. We only need to use E ′ instead of E for constructing
exploit constraints.

1 sigc::signal<void,
2 S2EExecutionState*,
3 const klee::ref<klee::Expr>& /* condition */,
4 bool& /* allow forking */>
5 onStateForkDecide;

Listing 3.21: The definition of onStateForkDecide signal

In summary, so far we have discussed: (1) the concept of input states and output states,

55

(2) how leak analysis and leak detection work under multi-path execution environment,
(3) the way we build an I/O states sequence for each execution path, and (4) how we
integrate I/O States with the constraint solver by overriding the guest canary and guest
ELF base. At this point, we have not yet discussed how we turn all these collected
runtime information into exploit scripts, so the reader might feel that something is missing.
However, this is absolutely normal. In chapter 3.7 (Exploit Generator), we’ll present the
most important component in our system that glues everything together.

3.6.2 Dynamic ROP

DynamicRop is a module available in CRAXplusplus. When loaded, it enables our
system to perform ROP inside S2E, allowing a technique to: (1) extend the execution path
beyond an exploitable state, and (2) add exploit constraints as we dynamically perform
ROP. Previously in Figure 28, we defined an exploitable execution state as a final state
of the program. However, when DynamicRop is loaded, an exploitable execution state
becomes a non-final state.

Background

The motivation of this module can be briefly explained with two examples. First, the
AdvancedStackPivoting technique introduced in section 3.5.3 depends on this module.
Second, consider the program shown in Listing 3.22 which has ASLR, PIE and canary
enabled, the program only gives us one chance to leak the canary and ELF base, but
since this program has both PIE and canary enabled, we need to perform information
leak twice. A possible solution mentioned by LAEG [22] is to design an exploit recipie
which partially overwrites the last few bytes of the return address of main(), so that we
can jump back to earlier code and obtain an extra input state. As of CRAXplusplus 0.1.1,
we have designed and implemented the DynamicRop module as the infrastructure to
implement these functionalities. Our system supports the first example, while the second
one is left as one of the future work since we believe it’s not just a trivial research topic.

1 // ASLR, PIE, NX, Canary, Full RELRO.
2 int main() {
3 char buf[0x18];
4 read(0, buf, 0x80);
5 printf("Hello, %s. Your comment: ", buf);
6 read(0, buf, 0x80);
7 }

Listing 3.22: A program with information leak vulnerability.

56

Extending the Execution Path Beyond an Exploitable State

Normally, once the target program has reached an exploitable state S, CRAXplusplus
invokes the exploit generator, and terminates S when exploit generation has finished.
However, what if we modify the RBP and RIP registers at S, making the target program
go beyond S? Moreover, suppose the subpath beyond S is denoted by PS, can we make
these modifications as a part of the exploit constraints such that a generated concrete
input guides the target program to S and even along PS?

In fact, such a thing is possible in S2E. To do it systematically, we maintain a con-
straints queue Q, where each element C ∈ Q is a set of constraints. Whenever on-
SymbolicRip() is triggered, we check if Q is empty. If it’s empty, then exploit generation
begins. Otherwise, we (1) take the first constraints set C at the front of Q, (2) for each
constraint c ∈ C, rewrite the register or memory location with c and add c to S, (3)
remove C from Q, and (4) make S2E continue at the instruction specified by the RIP
register constraint in C. In addition, as mentioned earlier in section 3.4.2, there are two
types of exploit constraints which we can add to Q: RegisterConstraint and MemoryCon-
straint. It is the responsibility of a technique to populate the constraints queue Q with
some exploit constraints, because different techniques can populate Q in different ways.

Algorithm 5 shows what CRAXplusplus does whenever RIP becomes symbolic, and
there are two things in the algorithm that we haven’t explained. First, if a leaked ELF
base E ′ is specified, then we rebase all the guest ELF addresses in the constraints to the
specified ELF base E ′. The reason has been stated in IOStates before: we use the leaked
ELF base E ′ instead of the guest ELF base E to construct exploit constraints, so that
the resulting payload is replayable. Second, at the end of this method, we invalidate the
current translation block in order to make S2E properly restart at the new PC, which is
required because QEMU translates and executes a block of instructions at a time. To
be more specific, in S2E, we have to throw a CpuExitException to invalidate the current
translation block.

57

Algorithm 5: DynamicRop::applyNextConstraintGroup()
input : S: A potentially exploitable S2EExecutionState.

E ′: The leaked ELF base.
1 vmmap ← mem(S).vmmap();
2 Q← get the constraints queue for S.
3 if Q = ∅ then
4 return;

5 foreach c ∈ Q.front() do
6 ok ← false;
7 e← c.expr

8 if e ∈ vmmap.ELF then
9 e← rebase e to another ELF base E ′.

10 if c is a MemoryConstraint then
11 ok ← RopPayloadBuilder::addMemoryConstraint(S, c.addr, e);
12 mem(S).writeSymbolic(c.addr, c.expr);
13 else if c is a RegisterConstraint then
14 ok ← RopPayloadBuilder::addRegisterConstraint(S, c.reg, e);
15 reg(S).writeSymbolic(c.reg, c.expr);

16 if ¬ ok then
17 Terminate S.

18 Remove the first element from Q.
19 Invalidate the current translation block.

58

3.7 Exploit Generator
We now present the final step in exploit generation. As discussed in section 3.4.6, we use
RopPayloadBuilder to chain an ordered list of ROP payload formulae Φ = [F0, F1, ..., Fn−1]

into a single formula F ′ and passes F ′ to the exploit generator. Now, it’s the job of the
exploit generator to turn F ′ into exploit scripts.

3.7.1 Exploit Script Generation

CRAXplusplus attempts to generate an exploit script for every potentially exploitable
state, where each script is based on the template shown in Figure 32. The generated script
uses pwntools [7] for parsing the program headers in ELF files as well as communicating
with the target process.

Each exploit script comprises four primary sections: (1) The header section containing
a shebang, import statements, and pwntools configuration. (2) Declarations of pwnlib’s
ELF objects. (3) Declarations of addresses of gadgets and memory locations. (4) The
main function.

Figure 32: The template of a generated exploit script.

59

3.7.2 Default Core Generator

A core generator is responsible for generating the main function of an exploit script. This
is the most important part of an exploit script as it contains the core logic of exploitation.

Every core generator in CRAXplusplus derives from ICoreGenerator and must im-
plement the pure virtual function ICoreGenerator::generateMainFunction(). By default,
CRAXplusplus comes with a DefaultCoreGenerator, but the user can write a module and
provide a custom core generator to override the default one. For instance, the IOStates
module comes with a LeakBasedCoreGenerator which overrides the default one when
IOStates is loaded. Figure 33 shows the inheritance diagram of core generators.

Figure 33: The inheritance diagram of core generators.

The DefaultCoreGenerator takes the final ROP payload formula F from RopPayload-
Builder, and turns F into blocks of strings where F is a two-dimensional list of S-Expr
trees. Please refer to Figure 13 from earlier for an illustration.

Algorithm 6: DefaultCoreGenerator::generateMainFunction()
input : S: (unused) The potentially exploitable S2EExecutionState.

F : The final ROP payload formula from RopPayloadBuilder.
Fstage1: (unused) The 1st-stage ROP payload (i.e. concrete input).

1 E ← get the exploit script.
2 foreach f ∈ F do
3 foreach t ∈ f do
4 E.appendRopPayload(evaluate<string>(t));

// Writes two lines: "proc.send(payload)" and "time.sleep(0.2)".
5 E.flushRopPayload();

60

3.7.3 Leak-Based Core Generator

LeakBasedCoreGenerator is a core generator provided by the IOStates module, and it
implements the LeakExploit() algorithm from LAEG [22]. This algorithm employs the
runtime information collected by IOStates::analyzeLeak() and IOStates::detectLeak() to
generate exploit scripts.

Algorithm 7 shows the main logic of this core generator: For an exploitable state
S, we iterate over the list of I/O StateInfo ΦS for S, and handle InputStateInfo and
OutputStateInfo in different ways, as shown in algorithm 8 and 9, respectively.

Algorithm 7: LeakBasedCoreGenerator::generateMainFunction()
input : S: The potentially exploitable S2EExecutionState.

F : The final ROP payload formula from RopPayloadBuilder.
Fstage1: The 1st-stage ROP payload (i.e. concrete input).

1 E ← get the exploit script.
2 ΦS ← get the list of I/O StateInfo for S.
3 P ← initialize a pseudo input stream with Fstage1.
4 for i = 0 to length(ΦS) do
5 φ← ΦS[i];
6 if φ is an InputStateInfo then
7 handleInputState(φ, P , ΦS, F);
8 else if φ is an OutputStateInfo then
9 handleOutputState(φ);

Let’s refer to Figure 34 as a practical example. Suppose that: (1) AdvancedStack-
Pivoting is used, (2) this target binary has ASLR, NX, and PIE enabled, and (3) both
IOStates and DynamicRop are enabled. On the RHS of Figure 34, we can see there are five
I/O StateInfo in total, where the first three StateInfo are produced by normal program
execution, and the last two StateInfo are produced due to DynamicRop.

To exploit this binary, we need to run S2E twice. For the first time, we perform leak
analysis and leak detection, looking for the input offsets that can leak information. Once
the RIP has become symbolic for the first time, DynamicRop starts performing ROP inside
S2E. As mentioned earlier, AdvancedStackPivoting looks for a call site of read(), so in this
example, we’ll make the target process return to the last call site of read() within main(),
obtaining an extra input state. Once the constraints queue of DynamicRop becomes
empty, real exploit generation begins.

When either canary or PIE is enabled, the 1st-stage ROP payload needs to be recal-

61

Figure 34: Pseudo input stream.

culated by running S2E again. When S2E runs for the second time, there’s no need to
perform leak analysis and leak detection again. In addition to the leaked ELF base, we
also pass the verified input offsets into S2E. Furthermore, when onSymbolicRip() is trig-
gered for the first time, DynamicRop will still be performed as usual until its constraints
queue is empty, and then we query the solver for a concrete input which is essentially a
big chunk of bytes. The beginning part of these bytes most likely consists of the input
bytes for leaking information at previous input states, and thus we need to discard them.
At the end of these bytes, there are probably some unused bytes from the original PoC
input, and they need to be discarded as well or the program will consume them first
rather than our 2nd-stage ROP payload. Therefore, during the first time S2E runs (i.e.
exploit generation time), we need to calculate the lowerbound and the upperbound of the
concrete input from which we want to extract.

This is where a PseudoInputStream becomes useful. In CRAXplusplus, a pseudo
input stream is an extended version of a typical input stream (e.g., std::basic_istream).
A typical input stream allows the user to read out n bytes from the underlying byte
sequence, whereas a pseudo input stream additionally allows the user to ”simulate” the
act of reading out n bytes. In this case, for each input state produced by normal program
execution, we use PseudoInputStream::read(). On the other hand, for each input
state produced by DynamicRop, we use PseudoInputStream::skip() to simulate the
act of reading.

Finally, if the input bytes at an input state is determined by DynamicRop, then we
should skip that input state, except for the last one in ΦS. Since DynamicRop adds
exploit constraints when it performs ROP inside S2E, the input bytes to send at those
input states are already merged into the 1st-stage ROP payload.

62

Algorithm 8: LeakBasedCoreGenerator::handleInputStateInfo()
input : φ: InputStateInfo.

P : Pseudo Input Stream.
ΦS: The list of I/O StateInfo.
F : The final ROP payload formula from RopPayloadBuilder.

1 E ← get the exploit script.
2 R← P .get the number of bytes read.
3 K ← P .get the number of bytes skipped.
4 stage1 ← ””;
5 if should skip this input state then
6 P .skip(φ.offset);
7 return;
8 if i is not the last InputStateInfo then
9 bytes ← P .read(φ.offset);

10 str_bytes ← convert bytes to a byte string.
11 E.writeline(format(”proc.send(%s)”, str_bytes));
12 else

// Handle the 1st-stage ROP payload.
13 if ¬ hasCanary ∧ ¬ hasPIE then
14 P .read(R + φ.offset);
15 stage1 += evaluate<string>(bytes);
16 else
17 str_iostates ← serialize ΦS.
18 stage1 += format(”solve_stage1(canary, elf_base, %s)”, str_iostates);
19 if R ∨K then
20 lo ← to_string(R) if R else ””;
21 hi ← to_string(R + K) if K else ””;
22 stage1 += format(”[%s:%s]”, lo, hi);
23 E.appendRopPayload(stage1);
24 E.flushRopPayload();

// Handle the 2nd-stage ROP payload.
25 for j = 1 to length(F) do
26 foreach t ∈ F [j] do
27 E.appendRopPayload(evaluate<string>(t));
28 E.flushRopPayload();

63

Algorithm 9: LeakBasedCoreGenerator::handleOutputStateInfo()
input : φ: OutputStateInfo.

1 E ← get the exploit script.
2 if φ.isInteresting then
3 E.writeline(format(”proc.recv(%d)”, φ.bufIndex));
4 if φ.leakType = LeakType::CANARY then
5 E.writeline(”canary = u64(b’\x00’ + proc.recv(7))”);
6 else if φ.leakType = LeakType::CODE then
7 E.writeline(”leaked = u64(proc.recv(6).ljust(8,b’\x00’))”);
8 E.writeline(format(”elf_base = leaked - 0x%x”, offset);
9 else if φ.leakType = LeakType::LIBC then

10 E.writeline(”leaked = u64(proc.recv(6).ljust(8,b’\x00’))”);
11 E.writeline(format(”libc_base = leaked - 0x%x”, offset);

12 E.writeline(”proc.recvrepeat(0.1)”);

64

Chapter 4

Evaluation

In this chapter, we evaluate the effectiveness of CRAXplusplus by answering the following
research questions:

• RQ1: Can CRAXplusplus generate exploits for binary programs with stack-buffer
overflow when ASLR and NX are enabled?

• RQ2: Can CRAXplusplus deal with various exploit mitigations (ASLR, NX, PIE,
Canary, and Full RELRO)?

• RQ3: To what extent can CRAXplusplus deal with input transformations?

4.1 Experimental Environment
In our experiments, we use two different environments: (1) the host and (2) the guest.
The host is a VM instance on VMWare ESXi 7.0.2 with Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz and 8GB of RAM running Ubuntu 20.04 (x86_64) as the operating system,
on which S2E is installed. The guest is Debian 9.2.1 (x86_64) running inside S2E. We
compiled all the CTF pwn binaries on the host using GCC 9.3.0, and concolically analyze
them inside the guest. Finally, all the generated exploit scripts are executed and verified
on the host.

4.2 Experimental Results
We prepare a number of CTF-style binaries with different combinations of exploit mitiga-
tions enabled, testing them against CRAXplusplus. Table 2 shows a list of CTF binaries
for which CRAXplusplus can successfully generate exploit scripts.

65

Table 2: List of x86_64 binaries successfully exploited by CRAXplusplus.

Binary (x86_64) Source / Advisory ID Input
Source

Vuln.
Type

PoC
Input Size
(Bytes)

Exploit Gen. Time (sec.)
Stage1 / Stage 2 / Total ASLR NX PIE Canary Full

RELRO

aslr-nx-pie-canary-fullrelro-trans CRAXplusplus stdin Local Stack 1024 89 / 37 / 126 ✓ ✓ ✓ ✓ ✓
aslr-nx-pie-canary-fullrelro CRAXplusplus stdin Local Stack 1024 87 / 39 / 126 ✓ ✓ ✓ ✓ ✓
aslr-nx-pie-canary CRAXplusplus stdin Local Stack 1024 57 / 24 / 81 ✓ ✓ ✓ ✓
aslr-nx-pie CRAXplusplus stdin Local Stack 345 82 / 31 / 113 ✓ ✓ ✓
aslr-nx-canary CRAXplusplus stdin Local Stack 345 53 / 32 / 85 ✓ ✓ ✓
aslr-nx CRAXplusplus stdin Local Stack 1024 11 / - / 11 ✓ ✓
speedrun-002 DEFCON’27 CTF Quals stdin Local Stack 2247 14 / - / 14 ✓ ✓
no_canary angstromctf 2020 stdin Local Stack 208 157 / - / 157 ✓ ✓
tranquil angstromctf 2021 stdin Local Stack 512 28 / - / 28 ✓ ✓
bof: 5 pt pwnable.kr stdin Local Stack 512 28 / - / 28 ✓ ✓
unexploitable: 500 pt pwnable.kr stdin Local Stack 512 13 / - / 13 ✓ ✓
unexploitable: 500 pts pwnable.tw stdin Local Stack 1024 15 / - / 15 ✓ ✓
unexploitable-trans CRAXplusplus stdin Local Stack 1024 16 / - / 16 ✓ ✓
ret2win ROP Emporium stdin Local Stack 512 12 / - / 12 ✓ ✓
split ROP Emporium stdin Local Stack 512 11 / - / 11 ✓ ✓
callme ROP Emporium stdin Local Stack 512 13 / - / 13 ✓ ✓
readme NTU Computer Security 2017 stdin Local Stack 1024 15 / - / 15 ✓ ✓
readme-alt1 CRAXplusplus stdin Local Stack 1024 14 / - / 14 ✓ ✓
readme-alt2 CRAXplusplus stdin Local Stack 1024 14 / - / 14 ✓ ✓
dnsmasq (2.77) CVE-2017-14993 socket Remote Stack 238 150 / - / 150
rsync (2.5.7) CVE-2004-2093 env Local Stack 141 33 / - / 33
ncompress (4.2.4) CVE-2001-1413 arg Local Stack 1054 69 / - / 69
glftpd (1.24) OSVDB-ID-16373 arg Local Stack 286 30 / - / 30
iwconfig (v26) BID-8901 arg Local Stack 94 28 / - / 28

4.2.1 RQ1: ASLR and NX

In table 2, there are two noticeable CTF challenges: (1) unexploitable (500 pts) from
pwnable.tw, and (2) readme from NTU Computer Security 2017 Fall. Although in these
two challenges, only ASLR and NX are enabled, they still require intermediate skills to
exploit. Accordingly, we pick them as our target programs.

Listing 4.1 and 4.2 show the source code used to compile the binaries from these
two CTF challenges. These two programs allocate stack buffers of different sizes, and
read() up to different number of bytes into their stack buffers. What’s more, in readme
challenge, the attacker can only overwrite RBP and RIP since the initially overflown stack
buffer is very limited in size. CRAXplusplus can successfully generate exploit scripts for
both challenges. For unexploitable, we use the techniques: [Ret2csu, BasicStackPivoting,
Ret2syscall], and for readme, we use the techniques: [Ret2csu, AdvancedStackPivoting,
Ret2syscall].

1 // ASLR, NX
2 int main() {
3 char buf[4];
4 sleep(3);
5 read(0, buf, 0x100);
6 }
7 .

Listing 4.1: unexploitable (500 pts)

1 // ASLR, NX
2 int main() {
3 char buf[0x20];
4 setvbuf(stdout, 0, _IONBF, 0);
5 printf("Read your input:");
6 read(0, buf, 0x30);
7 }

Listing 4.2: readme

66

To show that our exploit generator can work under different stack-buffer sizes and
read() sizes, we minimize the readme challenge into Listing 4.3. In addition, we adjust
the stack-buffer size and read() size, producing Listing 4.4. The results show that they
are both exploitable by CRAXplusplus.

1 // ASLR, NX
2 int main() {
3 char buf[0x20];
4 read(0, buf, 0x30);
5 }

Listing 4.3: readme-alt1

1 // ASLR, NX
2 int main() {
3 char buf[0x8];
4 read(0, buf, 0x50);
5 }

Listing 4.4: readme-alt2

4.2.2 RQ2: ASLR, NX, PIE, Canary, and Full RELRO

Next, we discuss whether CRAXplusplus can deal with various exploit mitigations, pro-
vided that the target program gives us sufficient chances to leak all the required informa-
tion. In our experiments, ASLR and NX are always enabled enabled, and when only PIE
or canary is enabled, we need one chance to leak the ELF base or the canary. That is, the
target program must at least have an input state followed by an output state. Besides,
when both PIE and canary are enabled, we will need two chances to leak both the ELF
base and the canary. As for libc base, we do not leak it from uninitialized memory using
I/O states, but instead we leak it through the technique GotLeakLibc, or just use some
techniques that can spawn a shell without leaking libc base.

We extend the two CTF challenges from RQ1 by enabling extra exploit mitigation(s).
In addition, we need to insert additional input and output states to the original programs
so that we have enough chances to leak sensitive information from uninitialized memory.

Canary and PIE

We’ll enable canary and PIE individually, and then enable both later. In the program
from Listing 4.5, ASLR, NX and canary are enabled. This program is slightly modified
from readme from RQ1, giving us exactly one chance to leak the canary using the call to
printf() at line 5. Afterwards, we can write our ROP payload (up to 0x80 bytes) through
the call to read() at line 6. Likewise, the program from Listing 4.6 has ASLR, NX and
PIE enabled, and it gives us exactly one chance to leak the ELF base. CRAXplusplus
can successfully generate working exploit scripts for these two challenges.

67

1 // ASLR, NX, Canary
2 int main() {
3 char buf[0x10];
4 read(0, buf, 0x80);
5 printf("%s\n", buf);
6 read(0, buf, 0x80);
7 }

Listing 4.5: aslr-nx-canary

1 // ASLR, NX, PIE
2 int main() {
3 char buf[0x10];
4 read(0, buf, 0x80);
5 printf("%s\n", buf);
6 read(0, buf, 0x80);
7 }

Listing 4.6: aslr-nx-pie

When both canary and PIE are enabled (as well as ASLR and NX, of course), we’ll need
two chances to leak both the canary and the ELF base. To satisfy such a requirement, we
prepare another program, as shown in Listing 4.7 and CRAXplusplus can also successfully
generate a working exploit script for this example.

1 // ASLR, NX, PIE, Canary
2 int main() {
3 setvbuf(stdin, NULL, _IONBF, 0);
4 setvbuf(stdout, NULL, _IONBF, 0);
5
6 char buf[0x20] = {0};
7 printf("what's your name: ");
8 read(0, buf, 0x80);
9

10 printf("Hello, %s. Your comment: ", buf);
11 read(0, buf, 0x80);
12
13 printf("Thanks! We've received it: %s\n", buf);
14 read(0, buf, 0x30);
15 }

Listing 4.7: aslr-nx-pie-canary.

Full RELRO

When Full RELRO is enabled, the GOT of the target process becomes unwritable, and
thus we must avoid any GOT hijacking technique. To circumvent such an obstacle, a
possible solution is to leak libc base from GOT and then spawn a shell using the ROP
gadgets in libc. Unfortunately, the program from Listing 4.7 is not exploitable because
when buffering is completely disabled (_IONBF), printf() would allocate 0x1000 bytes
on the stack, which can lead to a segmentation fault if RSP has already been migrated

68

to .bss (.bss is usually 0x1000 in size). Accordingly, we leave the buffering set to the
default mode (_IOLBF), and fflush() the buffered bytes to stdout immediately whenever
needed. CRAXplusplus can successfully generate a working exploit for this program using
the following techniques: [Ret2csu, AdvancedStackPivoting, GotLeakLibc, OneGadget].

1 // ASLR, NX, PIE, Canary, Full RELRO
2 int main() {
3 char buf[0x18];
4
5 printf("what's your name: ");
6 fflush(stdout);
7 read(0, buf, 0x80);
8
9 printf("Hello, %s. Your comment: ", buf);

10 fflush(stdout);
11 read(0, buf, 0x80);
12
13 printf("Thanks! We've received it: %s\n", buf);
14 fflush(stdout);
15 read(0, buf, 0x30);
16 }

Listing 4.8: aslr-nx-pie-canary-fullrelro.

4.2.3 RQ3: Exploit Mitigations and Input Transformations

We also evaluate the effectiveness of CRAXplusplus when the target program performs
input transformations. Listing 4.9 shows an example program modified from pwnable.tw’s
unexploitable (500 pts) challenge, where all the input bytes are reversed before main()
returns.

1 // ASLR, NX
2 int main() {
3 sleep(3);
4 char buf[4];
5 read(0, buf, 0x100);
6 std::reverse(buf, buf + 0x100);
7 }

Listing 4.9: unexploitable (500 pts) with the input bytes reversed.

69

Listing 4.10 is another example modified from aslr-nx-pie-canary-fullrelro. Before
main() returns, the program reverses the input bytes and performs some trivial input
transformations. CRAXplusplus can successfully generate working exploit scripts for
both Listing 4.9 and 4.10.

1 // ASLR, NX, PIE, Canary, Full RELRO
2 int main() {
3 char buf[0x18];
4
5 printf("what's your name: ");
6 fflush(stdout);
7 read(0, buf, 0x80);
8
9 printf("Hello, %s. Your comment: ", buf);

10 fflush(stdout);
11 read(0, buf, 0x80);
12
13 printf("Thanks! We've received it: %s\n", buf);
14 fflush(stdout);
15 read(0, buf, 0x30);
16
17 std::reverse(buf, buf + 0x30);
18 for (int i = 0; i < 0x30; i += 2) {
19 buf[i] += 1;
20 }
21 for (int i = 1; i < 0x30; i+= 2) {
22 buf[i] -= 3;
23 }
24 }

Listing 4.10: aslr-nx-pie-canary-fullrelro-trans.

Finally, we evaluate CRAXplusplus against more complicated input transformations,
and this time we pick Listing 4.11 as the target program. This program read() up to
0x400 bytes into a buffer, decodes the buffer using base64, and then overflows the stack
buffer buf with memcpy(). Theoretically, using concolic execution, we should be able to
query the solver for the 1st-stage payload which is encoded with base64, so that when
our 1st-stage payload is fed into this program, it is decoded with base64 and then copied
into buf.

70

Unfortunately, CRAXplusplus fails to generate a working exploit script for this pro-
gram, since S2E can’t handle symbolic array indices and symbolic pointers [15]. Figure
35 shows our implementation of b64decode() and how symbolic bytes propagate from
the input buffer to the output buffer. The red arrows in the figure indicate successful
propagation, while the blue ones indicate failed propagation. Since the input bytes are
used as indices to access the array T , the symbolic bytes will fail to propagate to the
output buffer. However, if we can implement the handling of symbolic array indices and
symbolic pointers in S2E 2.0, then CRAXplusplus should be able to generate a working
exploit script for Listing 4.11.

1 // ASLR, NX
2 char encoded[0x400] = {};
3 char decoded[0x400] = {};
4 int main() {
5 char buf[8];
6 printf("Give me some bytes to b64decode:\n");
7
8 nr_bytes_read = read(0, encoded, 0x400);
9 nr_bytes_read--;

10 encoded[nr_bytes_read] = 0;
11
12 b64decode(decoded, encoded, 0x400);
13 memcpy(buf, decoded, 0x400);
14 }

Listing 4.11: b64.

71

Figure 35: Implementation of b64decode() and the propagation of symbolic bytes.

72

Chapter 5

Conclusion and Future Work

5.1 Conclusion
In this thesis, we have designed and implemented a modular exploit generator, CRAX-
plusplus, based on S2E [6]. Our system supports custom modules and custom techniques
with the aim of maximizing its extensibility, allowing the user to customize how a gener-
ated exploit script should exploit the target binary. In addition, based on the results of
LAEG [22], we adapted I/O states and leak-based exploit generation to the multi-path
execution environment of S2E.

We evaluated CRAXplusplus against a number of CTF pwn binaries with different
combinations of exploit mitigations (ASLR, NX, PIE, Canary, and Full RELRO) enabled,
and the experimental results show that when a binary program contains information leak
vulnerabilities, CRAXplusplus can generate a working shell-spawning exploit script pro-
vided that the target binary gives us sufficient chances to leak all the required information
via I/O. Finally, we show that CRAXplusplus can not only deal with exploit mitigations,
but also deal with basic input transformations.

5.2 Future Work
Currently, CRAXplusplus only targets x86_64 CTF binaries. In our experiments, the
input and output states for leaking sensitive information via I/O are already provided
to the attacker, but in real-world scenarios, our exploit script will need to manually
manipulate the control-flow and stitch these input and output states in the correct order.
Furthermore, we need to implement support for symbolic array indices and symbolic
pointers in S2E, so that CRAXplusplus can work with more complex input transformations
such as base64 encoding and decoding.

73

Bibliography

[1] Thanassis Avgerinos et al. “Automatic exploit generation”. Communications of the
ACM 57.2 (2014), pp. 74–84.

[2] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX
annual technical conference, FREENIX Track. Vol. 41. Califor-nia, USA. 2005, p. 46.

[3] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “Klee: unassisted and
automatic generation of high-coverage tests for complex systems programs.” In:
OSDI . Vol. 8. 2008, pp. 209–224.

[4] Sang Kil Cha et al. “Unleashing mayhem on binary code”. In: 2012 IEEE Symposium
on Security and Privacy. IEEE. 2012, pp. 380–394.

[5] David Chiang. “OneGadget”. URL: https://github.com/david942j/one_gadget.

[6] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: A platform for
in-vivo multi-path analysis of software systems”. Acm Sigplan Notices 46.3 (2011),
pp. 265–278.

[7] Gallopsled. “Pwntools”. URL: https://github.com/Gallopsled/pwntools.

[8] Shih-Kun Huang et al. “Crax: Software crash analysis for automatic exploit gen-
eration by modeling attacks as symbolic continuations”. In: 2012 IEEE Sixth In-
ternational Conference on Software Security and Reliability. IEEE. 2012, pp. 78–
87.

[9] LAU kaijern. “Qiling”. URL: https://github.com/qilingframework/qiling.

[10] James C King. “Symbolic execution and program testing”. Communications of the
ACM 19.7 (1976), pp. 385–394.

[11] Avi Kivity et al. “kvm: the Linux virtual machine monitor”. In: Proceedings of the
Linux symposium. Vol. 1. 8. Dttawa, Dntorio, Canada. 2007, pp. 225–230.

[12] Donald E Knuth, James H Morris Jr, and Vaughan R Pratt. “Fast pattern matching
in strings”. SIAM journal on computing 6.2 (1977), pp. 323–350.

[13] David MacKenzie et al. “gnu Coreutils”. Free Software Foundation, Inc. Retrieved
October 26 (2009), p. 2009.

74

[14] Hector Marco-Gisbert and Ismael Ripoll. “Return-to-csu: A new method to bypass
64-bit Linux ASLR”. In: Black Hat Asia 2018. 2018.

[15] Lin Meng-Wei and Huang Shih-Kun. “Exploiting Symbolic Locations for Abnormal
Execution Paths”. PhD thesis. 2011.

[16] Christopher Roberts. “Zeratool”. URL: https://github.com/ChrisTheCoolHut/Zeratool.

[17] Ryan Roemer et al. “Return-oriented programming: Systems, languages, and appli-
cations”. ACM Transactions on Information and System Security (TISSEC) 15.1
(2012), pp. 1–34.

[18] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. “Q: Exploit Hard-
ening Made Easy.” In: USENIX Security Symposium. Vol. 10. 2028067.2028092.
2011.

[19] Koushik Sen. “Concolic testing”. In: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. 2007, pp. 571–572.

[20] Fish Wang and Yan Shoshitaishvili. “Angr-the next generation of binary analysis”.
In: 2017 IEEE Cybersecurity Development (SecDev). IEEE. 2017, pp. 8–9.

[21] Yan Wang et al. “Revery: From proof-of-concept to exploitable”. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
2018, pp. 1914–1927.

[22] MowWei Loon and Hsiao Hsu-Chun. “Bypassing ASLR with Dynamic Binary Anal-
ysis for Automated Exploit Generation” (2021).

75

	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	S2E
	CRAX
	Linux Exploit Mitigations
	Terminologies

	Problem Description
	Motivation
	Objectives

	Related Work
	AEG
	Mayhem
	Q
	CRAX
	Zeratool
	LAEG
	Revery

	Design and Implementation
	Overview
	Workflow
	Preparations

	APIs
	Registers and Memory
	Virtual Memory Map
	Disassembler
	Logging

	Signals and Hooks
	Symbolic RIP Handler
	Instruction Hooks
	System Call Hooks

	ROP Payload Builder
	Definitions
	Adding Register and Memory Constraints
	Querying the Solver for New Concrete Inputs
	Exploit Constraints
	Internal Representation
	Chaining the ROP Payload from Multiple Techniques

	Techniques
	Ret2csu
	BasicStackPivoting
	AdvancedStackPivoting
	Ret2syscall
	GotLeakLibc
	OneGadget

	Modules
	I/O States
	Dynamic ROP

	Exploit Generator
	Exploit Script Generation
	Default Core Generator
	Leak-Based Core Generator

	Evaluation
	Experimental Environment
	Experimental Results
	RQ1: ASLR and NX
	RQ2: ASLR, NX, PIE, Canary, and Full RELRO
	RQ3: Exploit Mitigations and Input Transformations

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

